dc.contributor.author | Getenet, Melese | |
dc.contributor.author | García Ruiz, Juan Manuel | |
dc.contributor.author | Verdugo-Escamilla, Cristóbal | |
dc.contributor.author | Guerra Tschuschke, Isabel | |
dc.date.accessioned | 2021-02-16T09:59:58Z | |
dc.date.available | 2021-02-16T09:59:58Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Getenet, M.; García-Ruiz, J.M.; Verdugo-Escamilla, C.; Guerra-Tschuschke, I. Mineral Vesicles and Chemical Gardens from Carbonate-Rich Alkaline Brines of Lake Magadi, Kenya. Crystals 2020, 10, 467. https://doi.org/10.3390/cryst10060467 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/66604 | |
dc.description.abstract | Mineral vesicles and chemical gardens are self-organized biomimetic structures that form via
abiotic mineral precipitation. These membranous structures are known to catalyze prebiotic reactions
but the extreme conditions required for their synthesis has cast doubts on their formation in nature.
Apart from model solutions, these structures have been shown to form in serpentinization-driven
natural silica-rich water and by fluid-rock interaction of model alkaline solutions with granites.
Here, for the first time, we demonstrate that self-assembled hollow mineral vesicles and gardens can
be synthesized in natural carbonate-rich soda lake water. We have synthesized these structures by a)
pouring saturated metal salt solutions, and b) by immersing metal salt pellets in brines collected from
Lake Magadi (Kenya). The resulting structures are analyzed by using SEM coupled with EDX analysis,
Raman spectroscopy, and powder X-ray diffraction. Our results suggest that mineral self-assembly
could have been a common phenomenon in soda oceans of early Earth and Earth-like planets and
moons. The composition of the obtained vesicles and gardens confirms the recent observation that
carbonate minerals in soda lakes sequestrate Ca, thus leaving phosphate behind in solution available
for biochemical reactions. Our results strengthens the proposal that alkaline brines could be ideal
sites for “one-pot” synthesis of prebiotic organic compounds and the origin of life. | es_ES |
dc.description.sponsorship | European Research Council (ERC)
340863 | es_ES |
dc.description.sponsorship | Spanish Government
CGL2016-78971-P | es_ES |
dc.description.sponsorship | "Ministerio de Ciencia, Innovacion y Universidades" of the Spanish government
BES-2017-081105 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | Atribución 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Lake Magadi | es_ES |
dc.subject | Soda lake | es_ES |
dc.subject | Mineral self-organization | es_ES |
dc.subject | Mineral vesicles | es_ES |
dc.subject | Calcite | es_ES |
dc.subject | Witherite | es_ES |
dc.subject | Rhodochrosite | es_ES |
dc.subject | Chemical gardens | es_ES |
dc.subject | Early Earth | es_ES |
dc.subject | Prebiotic chemistry | es_ES |
dc.subject | Origin of life | es_ES |
dc.title | Mineral Vesicles and Chemical Gardens from Carbonate-Rich Alkaline Brines of Lake Magadi, Kenya | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.identifier.doi | 10.3390/cryst10060467 | |