Mostrar el registro sencillo del ítem

dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.contributor.authorJiménez Mesa, Carmen 
dc.contributor.authorSegovia, Fermín
dc.contributor.authorCastillo Barnes, Diego 
dc.contributor.authorMartínez Murcia, Francisco Jesús 
dc.contributor.authorSalas-González, Diego
dc.contributor.authorIllan, Ignacio A.
dc.contributor.authorGarcía Puntonet, Carlos 
dc.contributor.authorLópez García, David
dc.date.accessioned2021-02-03T11:26:47Z
dc.date.available2021-02-03T11:26:47Z
dc.date.issued2020
dc.identifier.citationGorriz, J. M., Jimenez-Mesa, C., Romero-Garcia, R., Segovia, F., Ramirez, J., Castillo-Barnes, D., ... & Suckling, J. (2021). Statistical Agnostic Mapping: A framework in neuroimaging based on concentration inequalities. Information Fusion, 66, 198-212. [doi: 10.1016/j.inffus.2020.09.008]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/66263
dc.description.abstractIn the 1970s a novel branch of statistics emerged focusing its effort on the selection of a function for the pattern recognition problem that would fulfill a relationship between the quality of the approximation and its complexity. This theory is mainly devoted to problems of estimating dependencies in the case of limited sample sizes, and comprise all the empirical out-of sample generalization approaches; e.g. cross validation (CV). In this paper a data-driven approach based on concentration inequalities is designed for testing competing hypothesis or comparing different models. In this sense we derive a Statistical Agnostic (non-parametric) Mapping (SAM) for neuroimages at voxel or regional levels which is able to: (i) relieve the problem of instability with limited sample sizes when estimating the actual risk via CV; and (ii) provide an alternative way of Family-wise-error (FWE) corrected p-value maps in inferential statistics for hypothesis testing. Using several neuroimaging datasets (containing large and small effects) and random task group analyses to compute empirical familywise error rates, this novel framework resulted in a model validation method for small samples over dimension ratios, and a less-conservative procedure than FWE..-value correction to determine the significance maps from the inferences made using small upper bounds of the actual risk.es_ES
dc.description.sponsorshipMINECO/ FEDER, Spain RTI2018-098913-B100 CV20-45250 A-TIC-080-UGR18es_ES
dc.description.sponsorshipMinisterio de Universidades, Spain under the FPU Predoctoral Grant FPU 18/04902es_ES
dc.description.sponsorshipUnited States Department of Health & Human Services National Institutes of Health (NIH) - USA U01 AG024904es_ES
dc.description.sponsorshipDOD ADNI, Spain (Department of Defense) W81-XWH-12-2-0012es_ES
dc.description.sponsorshipUnited States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute on Aging (NIA)es_ES
dc.description.sponsorshipUnited States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute of Biomedical Imaging & Bioengineering (NIBIB)es_ES
dc.description.sponsorshipAbbViees_ES
dc.description.sponsorshipAlzheimer's Associationes_ES
dc.description.sponsorshipAlzheimer's Drug Discovery Foundationes_ES
dc.description.sponsorshipAraclon Bioteches_ES
dc.description.sponsorshipBioClinica, Inc.es_ES
dc.description.sponsorshipBiogenes_ES
dc.description.sponsorshipBristol-Myers Squibbes_ES
dc.description.sponsorshipCereSpir, Inc.es_ES
dc.description.sponsorshipCogstatees_ES
dc.description.sponsorshipEisai Co Ltdes_ES
dc.description.sponsorshipElan Pharmaceuticals, Inc.es_ES
dc.description.sponsorshipEli Lillyes_ES
dc.description.sponsorshipEuroImmunes_ES
dc.description.sponsorshipF. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.es_ES
dc.description.sponsorshipFujirebioes_ES
dc.description.sponsorshipGE Healthcarees_ES
dc.description.sponsorshipIXICO Ltd.es_ES
dc.description.sponsorshipJanssen Alzheimer Immunotherapy Research & Development, LLC.es_ES
dc.description.sponsorshipJohnson & Johnson USAes_ES
dc.description.sponsorshipLumosityes_ES
dc.description.sponsorshipLundbeck Corporationes_ES
dc.description.sponsorshipMerck & Companyes_ES
dc.description.sponsorshipMeso Scale Diagnostics, LLC.es_ES
dc.description.sponsorshipNeuroRx Researches_ES
dc.description.sponsorshipNeurotrack Technologieses_ES
dc.description.sponsorshipNovartises_ES
dc.description.sponsorshipPfizeres_ES
dc.description.sponsorshipPiramal Imaginges_ES
dc.description.sponsorshipServieres_ES
dc.description.sponsorshipTakeda Pharmaceutical Company Ltdes_ES
dc.description.sponsorshipTransition Therapeuticses_ES
dc.description.sponsorshipCanadian Institutes of Health Research (CIHR)es_ES
dc.language.isoenges_ES
dc.publisherELSEVIERes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectHypothesis testses_ES
dc.subjectUpper boundses_ES
dc.subjectActual and empirical riskses_ES
dc.subjectFinite class lemmaes_ES
dc.subjectRademacher averageses_ES
dc.subjectCross-validationes_ES
dc.titleStatistical Agnostic Mapping: A framework in neuroimaging based on concentration inequalitieses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.inffus.2020.09.008


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España