Afficher la notice abrégée

dc.contributor.authorGuillén Perales, Alberto 
dc.contributor.authorMartínez, José Carlos
dc.contributor.authorCarceller López, Juan Miguel
dc.contributor.authorHerrera Maldonado, Luis Javier 
dc.date.accessioned2021-01-20T11:58:54Z
dc.date.available2021-01-20T11:58:54Z
dc.date.issued2020-10-26
dc.identifier.citationGuillén, A., Martínez, J., Carceller, J. M., & Herrera, L. J. (2020). A Comparative Analysis of Machine Learning Techniques for Muon Count in UHECR Extensive Air-Showers. Entropy, 22(11), 1216. [doi:10.3390/e22111216]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/65652
dc.description.abstractThe main goal of this work is to adapt a Physics problem to the Machine Learning (ML) domain and to compare several techniques to solve it. The problem consists of how to perform muon count from the signal registered by particle detectors which record a mix of electromagnetic and muonic signals. Finding a good solution could be a building block on future experiments. After proposing an approach to solve the problem, the experiments show a performance comparison of some popular ML models using two different hadronic models for the test data. The results show that the problem is suitable to be solved using ML as well as how critical the feature selection stage is regarding precision and model complexity.es_ES
dc.description.sponsorshipSpanish Ministry of Economy and Competitiveness-MINECO FPA2015-70420-C2-2-R FPA2017-85197-P RTI2018-101674-B-I00es_ES
dc.description.sponsorshipEuropean Union (EU) FPA2015-70420-C2-2-R FPA2017-85197-P RTI2018-101674-B-I00es_ES
dc.language.isoenges_ES
dc.publisherMpdies_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectMachine learninges_ES
dc.subjectPierre Auger Observatoryes_ES
dc.subjectMuon countes_ES
dc.subjectRegressiones_ES
dc.subjectLS-SVMes_ES
dc.titleA Comparative Analysis of Machine Learning Techniques for Muon Count in UHECR Extensive Air-Showerses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/e22111216
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 3.0 España