Afficher la notice abrégée

dc.contributor.authorTriguero, Isaac
dc.contributor.authorGalar, Mikel
dc.contributor.authorMerino, D.
dc.contributor.authorMaillo Hidalgo, Jesús
dc.contributor.authorBustince, Humberto
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2020-12-23T12:50:24Z
dc.date.available2020-12-23T12:50:24Z
dc.date.issued2016
dc.identifier.citationPublished version: I. Triguero, M. Galar, D. Merino, J. Maillo, H. Bustince and F. Herrera, "Evolutionary undersampling for extremely imbalanced big data classification under apache spark," 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, 2016, pp. 640-647, [doi: 10.1109/CEC.2016.7743853.]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/65146
dc.descriptionThis work was supported by the Research Projects TIN2011-28488, TIN2013-40765-P, P10-TIC-6858 and P11-TIC-7765. I. Triguero holds a BOF postdoctoral fellowship from the Ghent University.es_ES
dc.description.abstractThe classification of datasets with a skewed class distribution is an important problem in data mining. Evolutionary undersampling of the majority class has proved to be a successful approach to tackle this issue. Such a challenging task may become even more difficult when the number of the majority class examples is very big. In this scenario, the use of the evolutionary model becomes unpractical due to the memory and time constrictions. Divide-and-conquer approaches based on the MapReduce paradigm have already been proposed to handle this type of problems by dividing data into multiple subsets. However, in extremely imbalanced cases, these models may suffer from a lack of density from the minority class in the subsets considered. Aiming at addressing this problem, in this contribution we provide a new big data scheme based on the new emerging technology Apache Spark to tackle highly imbalanced datasets. We take advantage of its in-memory operations to diminish the effect of the small sample size. The key point of this proposal lies in the independent management of majority and minority class examples, allowing us to keep a higher number of minority class examples in each subset. In our experiments, we analyze the proposed model with several data sets with up to 17 million instances. The results show the goodness of this evolutionary undersampling model for extremely imbalanced big data classification.es_ES
dc.description.sponsorshipTIN2011-28488es_ES
dc.description.sponsorshipTIN2013-40765-Pes_ES
dc.description.sponsorshipP10-TIC-6858es_ES
dc.description.sponsorshipP11-TIC-7765es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleEvolutionary Undersampling for Extremely Imbalanced Big Data Classification under Apache Sparkes_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/CEC.2016.7743853


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial-SinDerivadas 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-SinDerivadas 3.0 España