dc.contributor.author | García López, Salvador | |
dc.contributor.author | Herrera Triguero, Francisco | |
dc.date.accessioned | 2020-12-17T09:38:48Z | |
dc.date.available | 2020-12-17T09:38:48Z | |
dc.date.issued | 2008 | |
dc.identifier.citation | Garcia, S., Cano, J. R., & Herrera, F. (2008). A memetic algorithm for evolutionary prototype selection: A scaling up approach. Pattern Recognition, 41(8), 2693-2709. doi:10.1016/j.patcog.2008.02.006 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/64972 | |
dc.description.abstract | Prototype selection problem consists of reducing the size of databases by removing samples that are considered noisy or not influential on
nearest neighbour classification tasks. Evolutionary algorithms have been used recently for prototype selection showing good results. However,
due to the complexity of this problem when the size of the databases increases, the behaviour of evolutionary algorithms could deteriorate
considerably because of a lack of convergence. This additional problem is known as the scaling up problem.
Memetic algorithms are approaches for heuristic searches in optimization problems that combine a population-based algorithm with a local
search. In this paper, we propose a model of memetic algorithm that incorporates an ad hoc local search specifically designed for optimizing the
properties of prototype selection problem with the aim of tackling the scaling up problem. In order to check its performance, we have carried
out an empirical study including a comparison between our proposal and previous evolutionary and non-evolutionary approaches studied in
the literature.
The results have been contrasted with the use of non-parametric statistical procedures and show that our approach outperforms previously
studied methods, especially when the database scales up. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | ELSEVIER | es_ES |
dc.rights | Atribución 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Data reduction | es_ES |
dc.subject | Evolutionary algorithms | es_ES |
dc.subject | Memetic algorithms | es_ES |
dc.subject | Prototype selection | es_ES |
dc.subject | Scaling up | es_ES |
dc.subject | Nearest neighbour rule | es_ES |
dc.subject | Data mining | es_ES |
dc.title | A memetic algorithm for evolutionary prototype selection: A scaling up approach | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1016/j.patcog.2008.02.006 | |