Afficher la notice abrégée

dc.contributor.authorHerrera Triguero, Francisco 
dc.contributor.authorLozano Márquez, Manuel 
dc.date.accessioned2020-12-17T07:48:32Z
dc.date.available2020-12-17T07:48:32Z
dc.date.issued2003
dc.identifier.citationHerrera, F., Lozano, M., & Sanchez, A. (2003). A taxonomy for the crossover operator for real-coded genetic algorithms: An experimental study. International Journal of Intelligent Systems, 18(3), 309-338. doi:10.1002/int.10091es_ES
dc.identifier.urihttp://hdl.handle.net/10481/64963
dc.description.abstractThe main real-coded genetic algorithm (RCGA) research effort has been spent on developing efficient crossover operators. This study presents a taxonomy for this operator that groups its instances in different categories according to the way they generate the genes of the offspring from the genes of the parents. The empirical study of representative crossovers of all the categories reveals concrete features that allow the crossover operator to have a positive influence on RCGA performance. They may be useful to design more effective crossover models.es_ES
dc.language.isoenges_ES
dc.publisherWILEYes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleA Taxonomy for the Crossover Operator for Real-Coded Genetic Algorithms: An Experimental Studyes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/int.10091


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 3.0 España