Show simple item record

dc.contributor.authorCheca González, Antonio G. 
dc.contributor.authorMacías Sánchez, Elena
dc.contributor.authorRodríguez Navarro, Alejandro B.
dc.contributor.authorSánchez Navas, Antonio 
dc.contributor.authorLagos, Nelson A.
dc.identifier.citationCheca, A.G., Macías-Sánchez, E., Rodríguez-Navarro, A.B. et al. Origin of the biphase nature and surface roughness of biogenic calcite secreted by the giant barnacle Austromegabalanus psittacus. Sci Rep 10, 16784 (2020). []es_ES
dc.description.abstractThe calcite grains forming the wall plates of the giant barnacle Austramegabalanus psittacus have a distinctive surface roughness made of variously sized crystalline nanoprotrusions covered by extremely thin amorphous pellicles. This biphase (crystalline-amorphous) structure also penetrates through the crystal’s interiors, forming a web-like structure. Nanoprotrusions very frequently elongate following directions related to the crystallographic structure of calcite, in particular, the <− 441> directions, which are the strongest periodic bond chains (PBCs) in calcite. We propose that the formation of elongated nanoprotrusions happens during the crystallization of calcite from a precursor amorphous calcium carbonate (ACC). This is because biomolecules integrated within the ACC are expelled from such PBCs due to the force of crystallization, with the consequent formation of uninterrupted crystalline nanorods. Expelled biomolecules accumulate in adjacent regions, thereby stabilizing small pellicle-like volumes of ACC. With growth, such pellicles become occluded within the crystal. In summary, the surface roughness of the biomineral surface reflects the complex shape of the crystallization front, and the biphase structure provides evidence for crystallization from an amorphous precursor. The surface roughness is generally explained as resulting from the attachment of ACC particles to the crystal surface, which later crystallised in concordance with the crystal lattice. If this was the case, the nanoprotrusions do not reflect the size and shape of any precursor particle. Accordingly, the particle attachment model for biomineral formation should seek new evidence.es_ES
dc.description.sponsorshipInstituto de Salud Carlos III Spanish Government CGL2017-85118-P CGL2015-64683-Pes_ES
dc.description.sponsorshipUnidad Cientifica de Excelencia of the University of Granada UCE-PP2016-05es_ES
dc.description.sponsorshipJunta de Andalucía RNM363es_ES
dc.description.sponsorshipANID-Chile FONDECYT 1140938 PCI ANID REDES 170106 PIA ANID ANILLOS ACT172037es_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 3.0 España*
dc.subjectMineralogy es_ES
dc.subjectNanoscale biophysicses_ES
dc.subjectStructural materialses_ES
dc.titleOrigin of the biphase nature and surface roughness of biogenic calcite secreted by the giant barnacle Austromegabalanus psittacuses_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España