Afficher la notice abrégée

dc.contributor.authorSahar Tahvili
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2020-11-25T12:16:32Z
dc.date.available2020-11-25T12:16:32Z
dc.date.issued2020-08-14
dc.identifier.citationTahvili, S., Hatvani, L., Ramentol, E., Pimentel, R., Afzal, W., & Herrera, F. (2020). A novel methodology to classify test cases using natural language processing and imbalanced learning. Engineering applications of artificial intelligence, 95, 103878. [https://doi.org/10.1016/j.engappai.2020.103878]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/64485
dc.description.abstractDetecting the dependency between integration test cases plays a vital role in the area of software test optimization. Classifying test cases into two main classes – dependent and independent – can be employed for several test optimization purposes such as parallel test execution, test automation, test case selection and prioritization, and test suite reduction. This task can be seen as an imbalanced classification problem due to the test cases’ distribution. Often the number of dependent and independent test cases is uneven, which is related to the testing level, testing environment and complexity of the system under test. In this study, we propose a novel methodology that consists of two main steps. Firstly, by using natural language processing we analyze the test cases’ specifications and turn them into a numeric vector. Secondly, by using the obtained data vectors, we classify each test case into a dependent or an independent class. We carry out a supervised learning approach using different methods for handling imbalanced datasets. The feasibility and possible generalization of the proposed methodology is evaluated in two industrial projects at Bombardier Transportation, Sweden, which indicates promising results.es_ES
dc.description.sponsorshipVinnovaes_ES
dc.description.sponsorshipEuropean Union's Horizon 2020 research and innovation program 871319es_ES
dc.description.sponsorshipERCIM "Alain Bensoussan'' Fellowship Programmees_ES
dc.description.sponsorshipSpanish Government TIN2017-89517-Pes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectSoftware testinges_ES
dc.subjectArtificial intelligence es_ES
dc.subjectImbalanced classificationes_ES
dc.subjectNatural language processinges_ES
dc.subjectOptimizationes_ES
dc.subjectIFROWANNes_ES
dc.subjectDoc2Veces_ES
dc.titleA novel methodology to classify test cases using natural language processing and imbalanced learninges_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/871319es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.engappai.2020.103878
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 3.0 España