Mostrar el registro sencillo del ítem

dc.contributor.authorCaballero Águila, R.
dc.contributor.authorHermoso Carazo, Aurora 
dc.contributor.authorLinares Pérez, Josefa 
dc.date.accessioned2020-11-13T13:13:50Z
dc.date.available2020-11-13T13:13:50Z
dc.date.issued2019-07-31
dc.identifier.citationCaballero-Águila, R.; Hermoso-Carazo, A. and Linares-Pérez, J. (2019). Optimal Filtering Algorithm based on Covariance Information using a Sequential Fusion Approach.In Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-380-3, pages 587-594. [DOI: 10.5220/0007786405870594]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/64263
dc.description.abstractThe least-squares linear filtering problem is addressed for discrete-time stochastic signals, whose evolution model is unknown and only the mean and covariance functions of the processes involved in the sensor measurement equations are available instead. The sensor measured outputs are perturbed by additive noise and different uncertainties, which are modelled in a unified way by random parameter matrices. Assuming that, at each sampling time, the noises from the different sensors are cross-correlated with each other, the sequential fusion architecture is adopted and the innovation technique is used to derive an easily implementable recursive filtering algorithm. A simulation example is included to verify the effectiveness of the proposed sequential fusion filter and analyze the influence of the sensor disturbances on the filter performance.es_ES
dc.description.sponsorshipMinisterio de Economía, Industria y Competitividades_ES
dc.description.sponsorshipAgencia Estatal de Investigaciónes_ES
dc.description.sponsorshipFondo Europeo de Desarrollo Regional FEDER MTM2017-84199-Pes_ES
dc.language.isoenges_ES
dc.publisherScitePresses_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectSequential Fusion Filteringes_ES
dc.subjectRandom Parameter Matriceses_ES
dc.subjectCross-correlated Noiseses_ES
dc.subjectCovariance-based Estimationes_ES
dc.subjectSensor Networkses_ES
dc.titleOptimal Filtering Algorithm based on Covariance Information using a Sequential Fusion Approaches_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.5220/0007786405870594
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España