Afficher la notice abrégée

dc.contributor.authorCastro Infantes, Ildefonso
dc.contributor.authorCastro Infantes, Jesús 
dc.date.accessioned2020-10-05T12:54:41Z
dc.date.available2020-10-05T12:54:41Z
dc.date.issued2020-07
dc.identifier.citationCastro, I., Castro-Infantes, I., & Castro-Infantes, J. (2020). Curves in the Lorentz-Minkowski plane with curvature depending on their position. Open Mathematics, 18(1), 749-770. [https://doi.org/10.1515/math-2020-0043]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/63673
dc.description.abstractMotivated by the classical Euler elastic curves, David A. Singer posed in 1999 the problem of determining a plane curve whose curvature is given in terms of its position. We propound the same question in the Lorentz-Minkowski plane, focusing on spacelike and timelike curves. In this article, we study those curves in 2 whose curvature depends on the Lorentzian pseudodistance from the origin, and those ones whose curvature depends on the Lorentzian pseudodistance through the horizontal or vertical geodesic to a fixed lightlike geodesic. Making use of the notions of geometric angular momentum (with respect to the origin) and geometric linear momentum (with respect to the fixed lightlike geodesic), respectively, we get two abstract integrability results to determine such curves through quadratures. In this way, we find out several new families of Lorentzian spiral, special elastic and grim-reaper curves whose intrinsic equations are expressed in terms of elementary functions. In addition, we provide uniqueness results for the generatrix curve of the Enneper surface of second kind and for Lorentzian versions of some well-known curves in the Euclidean setting, like the Bernoulli lemniscate, the cardioid, the sinusoidal spirals and some nondegenerate conics. We are able to get arc-length parametrizations of them and they are depicted graphically.es_ES
dc.description.sponsorshipEuropean Union (EU) Spanish Government MTM2017-89677-Pes_ES
dc.description.sponsorshipMECD FPU16/03096es_ES
dc.language.isoenges_ES
dc.publisherDE GRUYTER POLAND SP Z O O, BOGUMILA ZUGA 32A STR, 01-811 WARSAW, MAZOVIA, POLANDes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectLorentzian curveses_ES
dc.subjectCurvaturees_ES
dc.subjectSinger’s problemes_ES
dc.subjectSinusoidal spiralses_ES
dc.subjectElastic curveses_ES
dc.subjectGrim-reaper curveses_ES
dc.titleCurves in the Lorentz-Minkowski plane with curvature depending on their positiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1515/math-2020-0043


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 3.0 España