Performance of pile-up mitigation techniques for jets in pp collisions at √s = 8 TeV using the ATLAS detector
Metadatos
Mostrar el registro completo del ítemEditorial
Springer Nature
Fecha
2016-10-27Referencia bibliográfica
Aad, G., Abbott, B., Abdallah, J. et al. Performance of pile-up mitigation techniques for jets in pp collisions at s√=8 TeV using the ATLAS detector. Eur. Phys. J. C 76, 581 (2016). [https://doi.org/10.1140/epjc/s10052-016-4395-z]
Patrocinador
ANPCyT; YerPhI, Armenia; Australian Research Council; BMWFW, Austria; Austrian Science Fund (FWF); Azerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; National Council for Scientific and Technological Development (CNPq); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Natural Sciences and Engineering Research Council of Canada; NRC, Canada; Canada Foundation for Innovation; CERN; Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); Chinese Academy of Sciences; Ministry of Science and Technology, China; National Natural Science Foundation of China; Departamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; Ministry of Education, Youth & Sports - Czech Republic Czech Republic Government; DNRF, Denmark; Danish Natural Science Research Council; Centre National de la Recherche Scientifique (CNRS); CEA-DSM/IRFU, France; GNSF, Georgia; Federal Ministry of Education & Research (BMBF); HGF, Germany; Max Planck Society; Greek Ministry of Development-GSRT; Hong Kong Research Grants Council; Israel Science Foundation; I-CORE, Israel; Benoziyo Center, Israel; Istituto Nazionale di Fisica Nucleare (INFN); Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science; CNRST, Morocco; FOM (The Netherlands) Netherlands Government; Netherlands Organization for Scientific Research (NWO) Netherlands Government; RCN, Norway; Ministry of Science and Higher Education, Poland; NCN, Poland; Portuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia; NRC KI; Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; Slovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; Swiss National Science Foundation (SNSF); Canton of Bern, Switzerland; Canton of Geneva, Switzerland; Ministry of Science and Technology, Taiwan; Ministry of Energy & Natural Resources - Turkey; United States Department of Energy (DOE); National Science Foundation (NSF); BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT; Ontario Innovation Trust, Canada; EPLANET; ERC, FP7, Horizon 2020; European Union (EU); French National Research Agency (ANR); Region Auvergne-Rhone-Alpes; Fondation Partager le Savoir, France; German Research Foundation (DFG); Alexander von Humboldt Foundation; Herakleitos, Thales - EU-ESF; Herakleitos, Aristeia - EU-ESF; Greek NSRF, Israel; US-Israel Binational Science Foundation; German-Israeli Foundation for Scientific Research and Development; Minerva, Israel; BRF, Norway; Royal Society of London; Leverhulme Trust; Science & Technology Facilities Council (STFC) GRIDPP ST/N000463/1 PP/E000444/1 1366825; ICREAResumen
The large rate of multiple simultaneous proton–proton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. This paper describes the methods employed in the ATLAS experiment to correct for the impact of pile-up on jet energy and jet shapes, and for the presence of spurious additional jets, with a primary focus on the large 20.3 fb−1 data sample collected at a centre-of-mass energy of s√=8 TeV. The energy correction techniques that incorporate sophisticated estimates of the average pile-up energy density and tracking information are presented. Jet-to-vertex association techniques are discussed and projections of performance for the future are considered. Lastly, the extension of these techniques to mitigate the effect of pile-up on jet shapes using subtraction and grooming procedures is presented.





