Mostrar el registro sencillo del ítem

dc.contributor.authorPaternò, Giuseppe Maria
dc.contributor.authorBramini, Mattia 
dc.date.accessioned2020-06-02T06:33:18Z
dc.date.available2020-06-02T06:33:18Z
dc.date.issued2020-03-06
dc.identifier.citationG. M. Paternò et al. Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene. Adv. Sci. 2020, 7, 1903241 [DOI: 10.1002/advs.201903241]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/62314
dc.descriptionG.M.P. and E.C. contributed equally to this work. G.M.P. acknowledges the financial support from Fondazione Cariplo, grant no. 2018-0979. The authors thank the financial support from the EU Horizon 2020 Research and Innovation Programme under Grant Agreement No. 643238 (SYNCHRONICS). The authors also thank Dr. Daniele Viola for helping with the analysis of the TA data.es_ES
dc.description.abstractThe non‐covalent affinity of photoresponsive molecules to biotargets represents an attractive tool for achieving effective cell photo‐stimulation. Here, an amphiphilic azobenzene that preferentially dwells within the plasma membrane is studied. In particular, its isomerization dynamics in different media is investigated. It is found that in molecular aggregates formed in water, the isomerization reaction is hindered, while radiative deactivation is favored. However, once protected by a lipid shell, the photochromic molecule reacquires its ultrafast photoisomerization capacity. This behavior is explained considering collective excited states that may form in aggregates, locking the conformational dynamics and redistributing the oscillator strength. By applying the pump probe technique in different media, an isomerization time in the order of 10 ps is identified and the deactivation in the aggregate in water is also characterized. Finally, it is demonstrated that the reversible modulation of membrane potential of HEK293 cells via illumination with visible light can be indeed related to the recovered trans→cis photoreaction in lipid membrane. These data fully account for the recently reported experiments in neurons, showing that the amphiphilic azobenzenes, once partitioned in the cell membrane, are effective light actuators for the modification of the electrical state of the membrane.es_ES
dc.description.sponsorshipFondazione Cariplo. Grant Number: 2018‐0979es_ES
dc.description.sponsorshipEU Horizon 2020 Research and Innovation Programme. Grant Number: 643238es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.relationEC/H2020/643238es_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectAmphiphilices_ES
dc.subjectAzobenzenees_ES
dc.subjectCell membranes es_ES
dc.subjectCell stimulationes_ES
dc.subjectUltrafast isomerizationes_ES
dc.titleMembrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzenees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/advs.201903241


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España