Show simple item record

dc.contributor.authorLoghin, Florin
dc.contributor.authorRivadeneyra Torres, Almudena 
dc.contributor.authorBecherer, Markus
dc.contributor.authorLugli, Paolo
dc.contributor.authorBobinger, Marco
dc.date.accessioned2020-05-14T11:28:46Z
dc.date.available2020-05-14T11:28:46Z
dc.date.issued2019-03-21
dc.identifier.citationLoghin, F., Rivadeneyra, A., Becherer, M., Lugli, P., & Bobinger, M. (2019). A facile and efficient protocol for preparing residual-free single-walled carbon nanotube films for stable sensing applications. Nanomaterials, 9(3), 471.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/62080
dc.description.abstractIn this article, we report on an efficient post-treatment protocol for the manufacturing of pristine single-walled carbon nanotube (SWCNT) films. To produce an ink for the deposition, the SWCNTs are dispersed in an aqueous solution with the aid of a carboxymethyl cellulose (CMC) derivative as the dispersing agent. On the basis of this SWCNT-ink, ultra-thin and uniform films are then fabricated by spray-deposition using a commercial and fully automated robot. By means of X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM), we show that the CMC matrix covering the CNTs can be fully removed by an immersion treatment in HNO3 followed by thermal annealing at a moderate temperature of 100 ºC, in the ambient air. We propose that the presented protocols for the ink preparation and the post-deposition treatments can in future serve as a facile and efficient platform for the fabrication of high-quality and residual-free SWCNT films. The purity of SWCNT films is of particular importance for sensing applications, where residual-induced doping and dedoping processes distort the contributions from the sensing specimen. To study the usability of the presented films for practical applications, gas sensors are fabricated and characterized with the CNT-films as the sensing material, screen printed silver-based films for the interdigitated electrode (IDE) structure, and polyimide as a flexible and robust substrate. The sensors show a high and stable response of 11% to an ammonia (NH3) test gas, at a concentration of 10 ppm.es_ES
dc.description.sponsorshipThe authors thank the Deutsche Forschungsgemeinschaft (DFG) and the Natural Sciences and Engineering Research Council (NSERC) for financial support of the Alberta/Technische Universität München Graduate School for Functional Hybrid Materials ATUMS (IRTG2022, NSERC CREATE), as well as the TUM Graduate School, the Nanosystems Initiative Munich (NIM), and the TUM International Graduate School of Science and Engineering (IGSSE).es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectCarbon nanotubeses_ES
dc.subjectCarboxymethyl cellulosees_ES
dc.subjectSprayinges_ES
dc.subjectDispersionses_ES
dc.subjectSensinges_ES
dc.titleA Facile and Efficient Protocol for Preparing Residual-Free Single-Walled Carbon Nanotube Films for Stable Sensing Applicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España