Show simple item record

dc.contributor.authorJabalera Ruz, Ylenia María 
dc.contributor.authorOltolina, Francesca
dc.contributor.authorPrat, María
dc.contributor.authorJiménez López, Concepción 
dc.contributor.authorFernández Sánchez, Jorge Fernando 
dc.contributor.authorChoquesillo Lazarte, Duane
dc.contributor.authorGómez Morales, Jaime
dc.date.accessioned2020-05-12T11:50:41Z
dc.date.available2020-05-12T11:50:41Z
dc.date.issued2020-01-23
dc.identifier.citationJabalera, Y., Oltolina, F., Prat, M., Jimenez-Lopez, C., Fernández-Sánchez, J. F., Choquesillo-Lazarte, D., & Gómez-Morales, J. (2020). Eu-Doped Citrate-Coated Carbonated Apatite Luminescent Nanoprobes for Drug Delivery. Nanomaterials, 10(2), 199.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/61989
dc.description.abstractIn the field of Nanomedicine, there is an increasing demand for new inorganic nanophosphors with low cytotoxicity and efficient loading-release ability of drugs for applications in bioimaging and drug delivery. This work assesses the potentiality of matured Eu-doped citrate-coated carbonated apatite nanoparticles to be used as theranostic platforms, for bioimaging, as luminescent nanoprobes, and for drug delivery applications, using Doxorubicin as a model drug. The drug adsorption isotherm fits the Langmuir–Freundlich (LF) model, showing that the Eu:cit-cAp nanoparticles can carry a maximum of 0.29 +/- 0.02 mg Doxo mg Eu:cit-cAp-1 (Qmax). The affinity constant KFL for this binding is 44 +/- 2 mL mg-1, and the cooperativity coefficient r is 6 +/- 1. The nanoparticle suspensions presented charge reversion from negative to positive after loading with Doxo as revealed by the c-potential versus pH characterization. The release of drug from the loaded nanoparticles was found to be strongly pH-dependent, being around 5 wt % at physiological pH 7.4 and 20 wt % at pH 5, in experiments lasting 24 h. Luminescence spectroscopic measurements of Doxo-loaded nanoparticles revealed the increase of luminescence with a decrease in the amount of adsorbed Doxo, due to the so-called inner filter effect. The nanoparticles free of Doxo were cytocompatible when interacted with two human cell lines derived respectively from a gastric carcinoma (GTL-16), and a hepatocarcinoma (Huh7), while Doxo-loaded nanoparticles displayed significant toxicity in a dose-dependent relationship. Therefore, the new nanoassemblies might have a dual function, as nanoprobes in bioimaging by detecting the fate of the nanoparticles in biological environments, and for monitoring the delivery of the drug in such environments, by measuring the rise of the luminescence provided by the desorption of Doxo.es_ES
dc.description.sponsorshipThis research was funded by Spanish Agencia Estatal de Investigación of the Ministerio de Ciencia, Innovación y Universidades and co-funded with FEDER, UE, Project No. PGC2018-102047-B-I00 (MCIU/AEI/FEDER, UE). The APC was funded by Grant No. PGC2018-102047-B-I00 (MCIU/AEI/FEDER, UE). C.J.-L. thanks project CGL2016-76723 (MINECO/FEDER, UE). Y.J. wants to acknowledge an FPU2016 grant (Ref. FPU16_04580).es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectEu-doped citrate-nanoapatiteses_ES
dc.subjectAdsorption isothermes_ES
dc.subjectDesorptiones_ES
dc.subjectLuminescence es_ES
dc.subjectCytotoxicityes_ES
dc.titleEu-Doped Citrate-Coated Carbonated Apatite Luminescent Nanoprobes for Drug Deliveryes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.3390/nano10020199


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España