Afficher la notice abrégée

dc.contributor.authorAlcántara Alcántara, Juan Manuel 
dc.contributor.authorSánchez-Delgado, Guillermo
dc.contributor.authorAmaro Gahete, Francisco José 
dc.contributor.authorGalgani, José E.
dc.contributor.authorRuiz Ruiz, Jonatan 
dc.date.accessioned2020-05-05T11:48:43Z
dc.date.available2020-05-05T11:48:43Z
dc.date.issued2020-02-14
dc.identifier.citationAlcantara, J., Sanchez-Delgado, G., Amaro-Gahete, F. J., Galgani, J. E., & Ruiz, J. R. (2020). Impact of the Method Used to Select Gas Exchange Data for Estimating the Resting Metabolic Rate, as Supplied by Breath-by-Breath Metabolic Carts. Nutrients, 12(2), 487.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/61791
dc.description.abstractThe method used to select representative gas exchange data from large datasets influences the resting metabolic rate (RMR) returned. This study determines which of three methods yields the lowest RMR (as recommended for use in human energy balance studies), and in which method the greatest variance in RMR is explained by classical determinants of this variable. A total of 107 young and 74 middle-aged adults underwent a 30 min RMR examination using a breath-by-breath metabolic cart. Three gas exchange data selection methods were used: (i) steady state (SSt) for 3, 4, 5, or 10 min, (ii) a pre-defined time interval (TI), i.e., 6–10, 11–15, 16–20, 21–25, 26–30, 6–25, or 6–30 min, and (iii) “filtering”, setting thresholds depending on the mean RMR value obtained. In both cohorts, the RMRs yielded by the SSt and filtering methods were significantly lower (p < 0.021) than those yielded by the TI method. No differences in RMR were seen under the different conditions of the SSt method, or of the filtering method. No differences were seen between the methods in terms of the variance in RMR explained by its classical determinants. In conclusion, the SSt and filtering methods return the lowest RMRs and intra-measurement coefficients of variation when using breath-by-breath metabolic carts.es_ES
dc.description.sponsorshipThis study was supported by the Spanish Ministry of Economy and Competitiveness via the Fondo de Investigación Sanitaria del Instituto de Salud Carlos III (PI13/01393), Retos de la Sociedad (DEP2016-79512-R) and European Regional Development Funds (ERDF), the Spanish Ministry of Education (FPU 15/04059 and FPU14/04172), the Fundación Iberoamericana de Nutrición (FINUT), the Redes Temáticas de Investigación Cooperativa RETIC (Red SAMID RD16/0022), the AstraZeneca HealthCare Foundation, the University of Granada Plan Propio de Investigación 2016 Excellence Actions: Unit of Excellence on Exercise and Health (UCEES) and Plan Propio de Investigación 2018 and 2019 Programa Contratos-Puente and Plan Propio de Investigación 2018 Programa Perfeccionamiento de Doctores, and the Junta de Andalucía, Consejería de Conocimiento, Investigación y Universidades (ERDF: ref. SOMM17/6107/UGR), and the Fundación Alfonso Martín Escudero.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectResting energy expenditurees_ES
dc.subjectIndirect calorimetryes_ES
dc.subjectMacronutrient oxidationes_ES
dc.titleImpact of the Method Used to Select Gas Exchange Data for Estimating the Resting Metabolic Rate, as Supplied by Breath-by-Breath Metabolic Cartses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/nu12020487


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 3.0 España