Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel
Metadatos
Mostrar el registro completo del ítemAutor
Meijide, AnaEditorial
Nature Research
Fecha
2020-02-27Referencia bibliográfica
Meijide, A., de la Rua, C., Guillaume, T. et al. Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel. Nat Commun 11, 1089 (2020). [https://doi.org/10.1038/s41467-020-14852-6]
Patrocinador
This study was financed by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)— Project-ID 192626868—in the framework of the collaborative German-Indonesian research project CRC990 (subprojects A03, A04 and A05).; Spanish national project GEISpain (CGL2014-52838-C2-1-R) and the DAAD (scholarship from the programme ‘Research Stays for University Academics and Scientist 2018, ref. no. 91687130)Resumen
The potential of palm-oil biofuels to reduce greenhouse gas (GHG) emissions compared with fossil fuels is increasingly questioned. So far, no measurement-based GHG budgets were available, and plantation age was ignored in Life Cycle Analyses (LCA). Here, we conduct LCA based on measured CO2, CH4 and N2O fluxes in young and mature Indonesian oil palm plantations. CO2 dominates the on-site GHG budgets. The young plantation is a carbon source (1012 ± 51 gC m−2 yr−1), the mature plantation a sink (−754 ± 38 gC m−2 yr−1). LCA considering the measured fluxes shows higher GHG emissions for palm-oil biodiesel than traditional LCA assuming carbon neutrality. Plantation rotation-cycle extension and earlier-yielding varieties potentially decrease GHG emissions. Due to the high emissions associated with forest conversion to oil palm, our results indicate that only biodiesel from second rotation-cycle plantations or plantations established on degraded land has the potential for pronounced GHG emission savings.