Mostrar el registro sencillo del ítem
Cohomology of Presheaves of Monoids
dc.contributor.author | Carrasco Carrasco, María Del Pilar | |
dc.contributor.author | Martínez Cegarra, Antonio | |
dc.date.accessioned | 2020-03-25T08:41:47Z | |
dc.date.available | 2020-03-25T08:41:47Z | |
dc.date.issued | 2020-01-12 | |
dc.identifier.citation | Carrasco, P.; Cegarra, A.M. Cohomology of Presheaves of Monoids. Mathematics 2020, 8, 116. [doi:10.3390/math8010116] | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/60606 | |
dc.description | This research received external funding from FQM-379: Algebra y Teoría de la Información | es_ES |
dc.description.abstract | The purpose of this work is to extend Leech cohomology for monoids (and so Eilenberg-Mac Lane cohomology of groups) to presheaves of monoids on an arbitrary small category. The main result states and proves a cohomological classification of monoidal prestacks on a category with values in groupoids with abelian isotropy groups. The paper also includes a cohomological classification for extensions of presheaves of monoids, which is useful to the study of H-extensions of presheaves of regular monoids. The results apply directly in several settings such as presheaves of monoids on a topological space, simplicial monoids, presheaves of simplicial monoids on a topological space, monoids or simplicial monoids on which a fixed monoid or group acts, and so forth. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | Atribución 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Cohomology | es_ES |
dc.subject | Presheaf of monoids | es_ES |
dc.subject | Monoidal prestack | es_ES |
dc.subject | Simplicial set | es_ES |
dc.subject | Homotopy colimit | es_ES |
dc.title | Cohomology of Presheaves of Monoids | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.3390/math8010116 |