Afficher la notice abrégée

dc.contributor.authorTejeda Lorente, Álvaro
dc.contributor.authorBernabé Moreno, Juan
dc.contributor.authorHerce Zelaya, Julio
dc.contributor.authorPorcel Gallego, Carlos Gustavo 
dc.contributor.authorHerrera Viedma, Enrique 
dc.date.accessioned2020-03-12T12:49:11Z
dc.date.available2020-03-12T12:49:11Z
dc.date.issued2019
dc.identifier.citationTejeda-Lorente, Á., Bernabé-Moreno, J., Herce-Zelaya, J., Porcel, C., & Herrera-Viedma, E. (2019). A risk-aware fuzzy linguistic knowledge-based recommender system for hedge funds. Procedia Computer Science, 162, 916-923.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/60242
dc.description.abstractOne of the most difficult tasks for hedge funds investors is selecting a proper fund with just the right level level of risk. Often times, the issue is not only quantifying the hedge fund risk, but also the level the investors consider just right. To support this decision, we propose a novel recommender system, which is aware of the risks associated to different hedge funds, considering multiple factors, such as current yields, historic performance, diversification by industry, etc. Our system captures the preferences of the investors (e.g. industries, desired level of risk) applying fuzzy linguistic modeling and provides personalized recommendations for matching hedge funds. To demonstrate how our approach works, we have first profiled more than 4000 top hedge funds based on their composition and performance and second, created different simulated investment profiles and tested our recommendations with them.es_ES
dc.description.sponsorshipThis paper has been developed with the FEDER financing under Project TIN2016-75850-R.es_ES
dc.language.isoenges_ES
dc.publisherElsevier BVes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleA risk-aware fuzzy linguistic knowledge-based recommender system for hedge fundses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.procs.2019.12.068


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial-SinDerivadas 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-SinDerivadas 3.0 España