Show simple item record

dc.contributor.advisorRodríguez Bouzas, Paula 
dc.contributor.advisorRuiz-Fuentes, Nuria
dc.contributor.authorMontes Gijón, María del Carmen
dc.contributor.otherUniversidad de Granada. Programa de Doctorado en Estadística Matemática y Aplicadaes_ES
dc.date.accessioned2020-02-19T10:02:53Z
dc.date.available2020-02-19T10:02:53Z
dc.date.issued2020
dc.date.submitted2020-01-24
dc.identifier.citationMontes Gijón, María del Carmen. Modelización e inferencia sobre procesos de recuento con intensidad estocástica: procesos de Cox y auto-excitados. Granada: Universidad de Granada, 2020. [http://hdl.handle.net/10481/59764]es_ES
dc.identifier.isbn9788413064437
dc.identifier.urihttp://hdl.handle.net/10481/59764
dc.description.abstractUna de las inquietudes que ha tenido el ser humano desde siempre es la de observar y contar ocurrencias, ya sean catástrofes o estrellas; a pesar de ello, establecer el origen de la actual teoría de los procesos puntuales es muy difícil. La teoría de los procesos de renovación, es decir la observación del tiempo entre ocurrencias, es quizá uno de los primeros campos que conforman la actual teoría, siendo las tres ramas más significativas de aplicación la teoría de colas, la teoría actuarial y la teoría de fiabilidad. Ligada a la teoría de los procesos puntuales siempre se encuentra la teoría de los procesos de recuento, en la cual la teoría de probabilidad de distribuciones discretas tiene un papel primordial. Desde el descubrimiento de la distribución de Poisson como límite de una binomial, han sido y siguen siendo muchos los estudios que toman como proceso de recuento más básico al proceso de Poisson a partir del cual desarrollan otros más complejos. Tras el estudio de los procesos de Cox, se ahonda también en una generalización de ellos, un proceso marcado, el proceso de Cox compuesto, tras un estudio pormenorizado de sus estadísticos, se ha realizado inferencia sobre ellos desarrollando incluso un contraste de bondad de ajuste de modo análogo al propuesto para el proceso de Cox. Si difícil es proporcionar expresiones cerradas para los estadísticos de los procesos anteriores, la dificultad se ve incrementada en el caso de los procesos auto-excitados. Estos procesos se caracterizan por tener dependencia del pasado. Tomando como base la intensidad condicionada al recuento se desarrollaron dichas ecuaciones, construyendo incluso un estimador puntual que sirve para poder construir estimadores de los estadísticos del proceso. Con el fin de evaluar los resultados teóricos obtenidos, se han puesto en práctica tanto en simulaciones como en aplicaciones sobre datos reales, ratificándose en todos los casos el buen funcionamiento de los mismos.es_ES
dc.description.sponsorshipTesis Univ. Granada.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isospaes_ES
dc.publisherUniversidad de Granadaes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectProcesos estocásticos es_ES
dc.subjectTécnicas de inferencia estadísticaes_ES
dc.subjectAnálisis de datoses_ES
dc.titleModelización e inferencia sobre procesos de recuento con intensidad estocástica: procesos de Cox y auto-excitadoses_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
europeana.typeTEXTen_US
europeana.dataProviderUniversidad de Granada. España.es_ES
europeana.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US


Files in this item

[PDF]

This item appears in the following Collection(s)

  • Tesis
    Tesis leídas en la Universidad de Granada

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España