Show simple item record

dc.contributor.authorLópez Camino, Rafael 
dc.date.accessioned2020-01-24T09:10:42Z
dc.date.available2020-01-24T09:10:42Z
dc.date.issued2019-12-09
dc.identifier.citationLópez, R. (2019). The Dirichlet Problem of the Constant Mean Curvature in Equation in Lorentz-Minkowski Space and in Euclidean Space. Mathematics, 7(12), 1211.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/59106
dc.description.abstractWe investigate the differences and similarities of the Dirichlet problem of the mean curvature equation in the Euclidean space and in the Lorentz-Minkowski space. Although the solvability of the Dirichlet problem follows standards techniques of elliptic equations, we focus in showing how the spacelike condition in the Lorentz-Minkowski space allows dropping the hypothesis on the mean convexity, which is required in the Euclidean case.es_ES
dc.description.sponsorshipThis research was partially supported by grant No. MTM2017-89677-P,MINECO/AEI/FEDER, UEes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectEuclidean spacees_ES
dc.subjectLorentz-Minkowski spacees_ES
dc.subjectDirichlet problemes_ES
dc.subjectMean curvaturees_ES
dc.subjectMaximum principlees_ES
dc.titleThe Dirichlet Problem of the Constant Mean Curvature in Equation in Lorentz-Minkowski Space and in Euclidean Spacees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/math7121211


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España