Mostrar el registro sencillo del ítem

dc.contributor.authorBarbarán Sánchez, Juan Jesús 
dc.contributor.authorEl Kaoutit Zerri, Laiachi 
dc.date.accessioned2020-01-22T12:05:10Z
dc.date.available2020-01-22T12:05:10Z
dc.date.issued2019-03-12
dc.identifier.citationJuan Jesús Barbarán Sánchez, Laiachi El Kaoutit, “Linear Representations and Frobenius Morphisms of Groupoids”, SIGMA, 15 (2019), 019, 33 pp.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/59015
dc.description.abstractGiven a morphism of (small) groupoids with injective object map, we provide su cient and necessary conditions under which the induction and co-induction functors between the categories of linear representations are naturally isomorphic. A morphism with this property is termed a Frobenius morphism of groupoids. As a consequence, an extension by a subgroupoid is Frobenius if and only if each bre of the (left or right) pull-back biset has nitely many orbits. Our results extend and clarify the classical Frobenius reciprocity formulae in the theory of nite groups, and characterize Frobenius extension of algebras with enough orthogonal idempotents.es_ES
dc.description.sponsorshipResearch supported by the Spanish Ministerio de Economía y Competitividad and the European Union FEDER, grant MTM2016-77033-Pes_ES
dc.language.isoenges_ES
dc.publisherSteklov Mathematical Institute RASes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectLinear representations of groupoidses_ES
dc.subjectInductions and co-induction functorses_ES
dc.subjectTranslation groupoidses_ES
dc.subjectFrobenius extensionses_ES
dc.subjectFrobenius reciprocity formulaes_ES
dc.subjectRestrictiones_ES
dc.subjectGroupoids-bisetses_ES
dc.titleLinear Representations and Frobenius Morphisms of Groupoidses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3842/SIGMA.2019.019


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España