Mostrar el registro sencillo del ítem

dc.contributor.advisorPegalajar Jiménez, María Del Carmen 
dc.contributor.authorBaca Ruiz, Luis Gonzaga 
dc.contributor.otherUniversidad de Granada. Programa de Doctorado en Tecnologías de la Información y la Comunicaciónes_ES
dc.date.accessioned2020-01-13T13:41:28Z
dc.date.available2020-01-13T13:41:28Z
dc.date.issued2020
dc.date.submitted2019-12-18
dc.identifier.citationBaca Ruiz, Luis Gonzaga. Gestión de la Eficiencia Energética Mediante Técnicas de Minería de Datos. Granada: Universidad de Granada, 2020. [http://hdl.handle.net/10481/58703]es_ES
dc.identifier.isbn9788413064079
dc.identifier.urihttp://hdl.handle.net/10481/58703
dc.description.abstractThe energy efficiency arises as one of the areas of the greatest government interest in current times. On the other hand, the increase of computational capabilities for information processing and its storage, along with the wide availability of sensing nets have led to a massive increase in data production in the Energy field. Consequently, the challenge lies in treating and processing such information so as to obtain consumption profiles, in addition, to use that information to support the decision-making process. In this context, Artificial Intelligence emerges as an adequate tool for solving this problem. As a result, specific applications for efficient energy management are recently being exploited. Thus, this thesis comprises the creation of predictive models to estimate the energy consumption of buildings and the optimization of those models, together with the implementation of a software prototype for visual energy monitoring and knowledge representation. To achieve this aim, we propose to use recurrent neural networks capable of modelling data with the particularity that have the time dependencies; such as, non-linear autoregressive neural networks (NAR), its version with external inputs to enhance accuracy (NARX), the Elman recurrent neural networks and the well-known LSTM. The results proved that the combination of these models with genetic algorithms as optimization method provides an excellent improvement in term of accuracy to predict energy consumption in buildings.es_ES
dc.description.sponsorshipTesis Univ. Granadaes_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isospaes_ES
dc.publisherUniversidad de Granadaes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectRedes neuronaleses_ES
dc.subjectEficiencia energéticaes_ES
dc.subjectSeries temporales es_ES
dc.subjectMinería de datoses_ES
dc.titleGestión de la Eficiencia Energética Mediante Técnicas de Minería de Datoses_ES
dc.typedoctoral thesises_ES
europeana.typeTEXTen_US
europeana.dataProviderUniversidad de Granada. España.es_ES
europeana.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.rights.accessRightsopen accessen_US


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Tesis
    Tesis leídas en la Universidad de Granada

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España