Show simple item record

dc.contributor.authorGouveia, Ricardo
dc.contributor.authorGonzález-Andrades, Elena
dc.contributor.authorCardona Pérez, Juan De La Cruz 
dc.contributor.authorGonzález-Gallardo, María del Carmen
dc.contributor.authorIonescu, Ana María Andreea
dc.contributor.authorGarzón Bello, Ingrid Johanna 
dc.contributor.authorAlaminos Mingorance, Miguel 
dc.contributor.authorGonzález Andrades, Miguel
dc.contributor.authorConnon, Che
dc.identifier.citationGouveia, R. M., González-Andrades, E., Cardona, J. C., González-Gallardo, C., Ionescu, A. M., Garzon, I., ... & Connon, C. J. (2017). Controlling the 3D architecture of Self-Lifting Auto-generated Tissue Equivalents (SLATEs) for optimized corneal graft composition and stability. Biomaterials, 121, 205-219.es_ES
dc.description.abstractIdeally, biomaterials designed to play specific physical and physiological roles in vivo should comprise components and microarchitectures analogous to those of the native tissues they intend to replace. For that, implantable biomaterials need to be carefully designed to have the correct structural and compositional properties, which consequently impart their bio-function. In this study, we showed that the control of such properties can be defined from the bottom-up, using smart surface templates to modulate the structure, composition, and bio-mechanics of human transplantable tissues. Using multi-functional peptide amphiphile-coated surfaces with different anisotropies, we were able to control the phenotype of corneal stromal cells and instruct them to fabricate self-lifting tissues that closely emulated the native stromal lamellae of the human cornea. The type and arrangement of the extracellular matrix comprising these corneal stromal Self-Lifting Analogous Tissue Equivalents (SLATEs) were then evaluated in detail, and was shown to correlate with tissue function. Specifically, SLATEs comprising aligned collagen fibrils were shown to be significantly thicker, denser, and more resistant to proteolytic degradation compared to SLATEs formed with randomly-oriented constituents. In addition, SLATEs were highly transparent while providing increased absorption to near-UV radiation. Importantly, corneal stromal SLATEs were capable of constituting tissues with a higher-order complexity, either by creating thicker tissues through stacking or by serving as substrate to support a fully-differentiated, stratified corneal epithelium. SLATEs were also deemed safe as implants in a rabbit corneal model, being capable of integrating with the surrounding host tissue without provoking inflammation, neo-vascularization, or any other signs of rejection after a 9-months follow-up. This work thus paves the way for the de novo biofabrication of easy-retrievable, scaffold-free human tissues with controlled structural, compositional, and functional properties to replace corneal, as well as other, tissueses_ES
dc.description.sponsorshipThis study was supported by the Medical Research Council grant MR/ K017217/1, the Biotechnology and Biological Sciences Research Council, grant BB/I008187/1 and the Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I + D + I) from the Spanish Ministry of Economy and Competitiveness (Instituto de Salud Carlos III), grant FIS PI14/0955 (cofinanced by FEDER funds, European Union).es_ES
dc.publisherElsevier BVes_ES
dc.rightsAtribución 3.0 España*
dc.subjectTissue templatinges_ES
dc.subjectCorneal stromaes_ES
dc.titleControlling the 3D architecture of Self-Lifting Auto-generated Tissue Equivalents (SLATEs) for optimized corneal graft composition and stabilityes_ES
dc.identifier.doi10.1016/j.biomaterials.2016.12.023 0

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España