Mostrar el registro sencillo del ítem

dc.contributor.authorSegovia, Fermín
dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.contributor.authorRamírez Pérez De Inestrosa, Javier 
dc.contributor.authorMartínez Murcia, Francisco Jesús 
dc.contributor.authorCastillo Barnes, Diego 
dc.date.accessioned2019-11-22T12:15:03Z
dc.date.available2019-11-22T12:15:03Z
dc.date.issued2019-05-14
dc.identifier.citationSegovia, F., Górriz, J. M., Ramírez, J., Martínez-Murcia, F. J., & Castillo-Barnes, D. (2019). Assisted Diagnosis of Parkinsonism Based on the Striatal Morphology. International journal of neural systems, 1950011-1950011.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/58030
dc.description.abstractParkinsonism is a clinical syndrome characterized by the progressive loss of striatal dopamine. Its diagnosis is usually corroborated by neuroimaging data such as DaTSCAN neuroimages that allow visualizing the possible dopamine deficiency. During the last decade, a number of computer systems have been proposed to automatically analyze DaTSCAN neuroimages, eliminating the subjectivity inherent to the visual examination of the data. In this work, we propose a computer system based on machine learning to separate Parkinsonian patients and control subjects using the size and shape of the striatal region, modeled from DaTSCAN data. First, an algorithm based on adaptative thresholding is used to parcel the striatum. This region is then divided into two according to the brain hemisphere division and characterized with 152 measures, extracted from the volume and its three possible 2-dimensional projections. Afterwards, the Bhattacharyya distance is used to discard the least discriminative measures and, finally, the neuroimage category is estimated by means of a Support Vector Machine classifier. This method was evaluated using a dataset with 189 DaTSCAN neuroimages, obtaining an accuracy rate over 94%. This rate outperforms those obtained by previous approaches that use the intensity of each striatal voxel as a feature.es_ES
dc.description.sponsorshipThis work was supported by the MINECO/ FEDER under the TEC2015-64718-R project, the Ministry of Economy, Innovation, Science and Employment of the Junta de Andaluc´ıa under the P11-TIC-7103 Excellence Project and the Vicerectorate of Research and Knowledge Transfer of the University of Granada.es_ES
dc.language.isoenges_ES
dc.publisherWorld Scientific Publishing Companyes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectParkinsonismes_ES
dc.subjectMachine learninges_ES
dc.subjectStriatal morphologyes_ES
dc.subjectStriatumes_ES
dc.titleAssisted Diagnosis of Parkinsonism Based on the Striatal Morphologyes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1142/S0129065719500114


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España