Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález Peñalver, Jesús 
dc.contributor.authorOrtega Lopera, Julio 
dc.contributor.authorDamas Hermoso, Miguel 
dc.contributor.authorMartín Smith, Pedro Jesús 
dc.contributor.authorGan, John Q.
dc.date.accessioned2019-11-15T12:26:15Z
dc.date.available2019-11-15T12:26:15Z
dc.date.issued2019-03-14
dc.identifier.citationJ. González, J. Ortega, M. Damas, P. Martín-Smith, J. Q. Gan, A new multi-objective wrapper method for feature selection – Accuracy and stability analysis for BCI, Neurocomputing 333 (14) (2019) 407–418.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/57925
dc.description.abstractFeature selection is an important step in building classifiers for high-dimensional data problems, such as EEG classification for BCI applications. This paper proposes a new wrapper method for feature selection, based on a multi-objective evolutionary algorithm, where the representation of the individuals or potential solutions, along with the breeding operators and objective functions, have been carefully designed to select a small subset of features that has good generalization capability, trying to avoid the over-fitting problems that wrapper methods usually suffer. A novel feature ranking procedure is also proposed in order to analyze the stability of the proposed wrapper method. Four different classification schemes have been applied within the proposed wrapper method in order to evaluate its accuracy and stability for feature selection on a real motor imagery dataset. Experimental results show that the wrapper method presented in this paper is able to obtain very small subsets of features, which are quite stable and also achieve high classification accuracy, regardless of the classifiers used.es_ES
dc.description.sponsorshipProject TIN2015-67020-P (Spanish “Ministerio de Economía y Competitividad”)es_ES
dc.description.sponsorshipEuropean Regional Development Funds (ERDF)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectBCIes_ES
dc.subjectEEGes_ES
dc.subjectMotor imageryes_ES
dc.subjectFeature selectiones_ES
dc.subjectMulti-objective problemes_ES
dc.subjectEvolutionary algorithmes_ES
dc.subjectClassification es_ES
dc.subjectStabilityes_ES
dc.subjectEnsemblees_ES
dc.titleA new multi-objective wrapper method for feature selection – Accuracy and stability analysis for BCIes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.neucom.2019.01.017


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España