Cosmological phase transitions in warped space: gravitational waves and collider signatures
Metadata
Show full item recordEditorial
Springer Nature
Materia
Beyond Standard Model Cosmology of Theories beyond the SM Field theories in higher dimensions
Date
2018-09-17Referencia bibliográfica
Megías, E., Nardini, G., & Quirós, M. (2018). Cosmological phase transitions in warped space: gravitational waves and collider signatures. Journal of High Energy Physics, 2018(9), 95.
Sponsorship
The work of EM is supported by the Spanish MINEICO under Grant FPA2015-64041-C2-1-P and FIS2017-85053-C2-1-P, by the Junta de Andaluc a under Grant FQM-225, by the Basque Government under Grant IT979-16, and by the Spanish Consolider Ingenio 2010 Programme CPAN (CSD2007-00042). The research of EM is also supported by the Ram on y Cajal Program of the Spanish MINEICO, and by the Universidad del Pa s Vasco UPV/EHU, Bilbao, Spain, as a Visiting Professor. GN is supported by the Swiss National Science Foundation (SNF) under grant 200020-168988. The work of MQ is partly supported by Spanish MINEICO under Grant CICYT-FEDER-FPA2014- 55613-P and FPA2017-88915-P, by the Severo Ochoa Excellence Program of MINEICO under Grant SEV-2016-0588, and by CNPq PVE fellowship project 405559/2013-5.Abstract
We study the electroweak phase transition within a 5D warped model including
a scalar potential with an exponential behavior, and strong back-reaction over the metric,
in the infrared. By means of a novel treatment of the superpotential formalism, we explore
parameter regions that were previously inaccessible. We nd that for large enough values
of the t'Hooft parameter (e.g. N = 25) the holographic phase transition occurs, and it
can force the Higgs to undergo a rst order electroweak phase transition, suitable for
electroweak baryogenesis. The model exhibits gravitational waves and colliders signatures.
It typically predicts a stochastic gravitational wave background observable both at the
Laser Interferometer Space Antenna and at the Einstein Telescope. Moreover the radion
tends to be heavy enough such that it evades current constraints, but may show up in
future LHC runs.