Show simple item record

dc.contributor.authorGuirado, Emilio
dc.contributor.authorTabik, Siham
dc.contributor.authorRivas, Marga
dc.contributor.authorAlcaraz Segura, Domingo 
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2019-10-21T11:05:33Z
dc.date.available2019-10-21T11:05:33Z
dc.date.issued2019-10-03
dc.identifier.citationGuirado, E., Tabik, S., Rivas, M. L., Alcaraz-Segura, D., & Herrera, F. (2019). Whale counting in satellite and aerial images with deep learning. Scientific reports, 9(1), 1-12.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/57457
dc.description.abstractDespite their interest and threat status, the number of whales in world’s oceans remains highly uncertain. Whales detection is normally carried out from costly sighting surveys, acoustic surveys or through high-resolution images. Since deep convolutional neural networks (CNNs) are achieving great performance in several computer vision tasks, here we propose a robust and generalizable CNN-based system for automatically detecting and counting whales in satellite and aerial images based on open data and tools. In particular, we designed a two-step whale counting approach, where the first CNN finds the input images with whale presence, and the second CNN locates and counts each whale in those images. A test of the system on Google Earth images in ten global whale-watching hotspots achieved a performance (F1-measure) of 81% in detecting and 94% in counting whales. Combining these two steps increased accuracy by 36% compared to a baseline detection model alone. Applying this cost-effective method worldwide could contribute to the assessment of whale populations to guide conservation actions. Free and global access to high-resolution imagery for conservation purposes would boost this process.es_ES
dc.description.sponsorshipS.T. was supported by the Ramón y Cajal Programme of the Spanish government (RYC-2015-18136). S.T., E.G., and F.H. were supported by the Spanish Ministry of Science under the project TIN2017-89517-P. D. A-S. received support from European LIFE Project ADAPTAMED LIFE14 CCA/ES/000612, and from ERDF and Andalusian Government under the project GLOCHARID. D.A.-S. received support from NASA Work Programme on Group on Earth Observations - Biodiversity Observation Network (GEOBON) under grant 80NSSC18K0446, from project ECOPOTENTIAL, funded by European Union Horizon 2020 Research and Innovation Programme under grant agreement No. 641762, and from the Spanish Ministry of Science under project CGL2014-61610-EXP and grant JC2015-00316. M.R. received support from International mobility grant for prestigious researchers by (CEIMAR) International Campus of Excellence of the Sea.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/641762es_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleWhale counting in satellite and aerial images with deep learninges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1038/s41598-019-50795-9


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España