Mostrar el registro sencillo del ítem

dc.contributor.authorRus Carlborg, Guillermo 
dc.contributor.authorMelchor, Juan
dc.date.accessioned2019-04-03T12:14:27Z
dc.date.available2019-04-03T12:14:27Z
dc.date.issued2018-09-07
dc.identifier.citationLogical Inference Framework for Experimental Design of Mechanical Characterization Procedures. Sensors 2018, 18, 2984.es_ES
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10481/55333
dc.description.abstractOptimizing an experimental design is a complex task when a model is required for indirect reconstruction of physical parameters from the sensor readings. In this work, a formulation is proposed to unify the probabilistic reconstruction of mechanical parameters and an optimization problem. An information-theoretic framework combined with a new metric of information density is formulated providing several comparative advantages: (i) a straightforward way to extend the formulation to incorporate additional concurrent models, as well as new unknowns such as experimental design parameters in a probabilistic way; (ii) the model causality required by Bayes’ theorem is overridden, allowing generalization of contingent models; and (iii) a simpler formulation that avoids the characteristic complex denominator of Bayes’ theorem when reconstructing model parameters. The first step allows the solving of multiple-model reconstructions. Further extensions could be easily extracted, such as robust model reconstruction, or adding alternative dimensions to the problem to accommodate future needs.es_ES
dc.description.sponsorshipThis research was supported by the Ministry of Education DPI2014-51870-R, DPI2017-85359-R and UNGR15-CE-3664, Ministry of Health DTS15/00093 and PI16/00339, and Junta de Andalucía PIN-0030-2017 and PI-0107-2017 projects, and university of Granada PP2017-PIP2019.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectInverse problemes_ES
dc.subjectInference Bayesian updatinges_ES
dc.subjectModel-class selectiones_ES
dc.subjectStochastic Inverse problemes_ES
dc.subjectProbability logices_ES
dc.subjectExperimental designes_ES
dc.titleLogical Inference Framework for Experimental Design of Mechanical Characterization Procedureses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España