Afficher la notice abrégée

dc.contributor.authorCamacho Páez, José 
dc.date.accessioned2019-04-01T06:29:14Z
dc.date.available2019-04-01T06:29:14Z
dc.date.issued2017-01
dc.identifier.urihttp://hdl.handle.net/10481/55290
dc.description.abstractThe simulation of multivariate data is often necessary for assessing the performance of multivariate analysis techniques. The random generation of multivariate data when the covariance matrix is completely or partly specified is solved by different methods, from the Cholesky decomposition to some recent alternatives. However, many times the covariance matrix has to be generated also at random, so that the data simulation spans different situations from highly correlated to uncorrelated data. This is the case when assessing a new multivariate analysis technique in Montercarlo experiments. In this paper, we introduce a new algorithm for the generation of random data from covariance matrices of random structure, where the user only decides the data dimension and the level of correlation. We will illustrate the application of this algorithm in several relevant problems in multivariate analysis, namely the selection of the number of Principal Components in Principal Component Analysis, the evaluation of the performance of sparse Partial Least Squares and the calibration of Multivariate Statistical Process Control systems. The algorithm is available as part of the MEDA Toolbox v1.1 1es_ES
dc.language.isoenges_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectMultivariate dataes_ES
dc.subjectSimulationes_ES
dc.subjectADICOVes_ES
dc.subjectMEDA toolboxes_ES
dc.subjectMétodo Montecarloes_ES
dc.titleOn the Generation of Random Multivariate Dataes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.chemolab.2016.11.013


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial-SinDerivadas 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-SinDerivadas 3.0 España