Mostrar el registro sencillo del ítem

dc.contributor.authorMacía Fernández, Gabriel 
dc.contributor.authorCamacho Páez, José 
dc.contributor.authorMagán Carrión, Roberto 
dc.contributor.authorGarcía Teodoro, Pedro 
dc.contributor.authorTheron, Roberto
dc.date.accessioned2019-04-01T06:17:30Z
dc.date.available2019-04-01T06:17:30Z
dc.date.issued2018-03
dc.identifier.urihttp://hdl.handle.net/10481/55280
dc.description.abstractThe evaluation of algorithms and techniques to implement intrusion detection systems heavily rely on the existence of well designed datasets. In the last years, a lot of efforts have been done towards building these datasets. Yet, there is still room to improve. In this paper, a comprehensive review of existing datasets is first done, making emphasis on their main shortcomings. Then, we present a new dataset that is built with real traffic and up-to-date attacks. The main advantage of this dataset over previous ones is its usefulness for evaluating IDSs that consider long-term evolution and traffic periodicity. Models that consider differences in daytime/night or weekdays/weekends can also be trained and evaluated with it. We discuss all the requirements for a modern IDS evaluation dataset and analyze how the one presented here meets the different needs.
dc.language.isoenges_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectNetwork securityes_ES
dc.subjectIDSes_ES
dc.subjectNetwork traffices_ES
dc.subjectNetflowes_ES
dc.titleUGR’16: A New Dataset for the Evaluation of Cyclostationarity-Based Network IDSses_ES
dc.typejournal articlees_ES
dc.typeotheres_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.cose.2017.11.004


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España