Mostrar el registro sencillo del ítem

dc.contributor.authorPerri, Pier Francesco
dc.contributor.authorRueda García, María Del Mar 
dc.contributor.authorCobo Rodríguez, Beatriz 
dc.date.accessioned2018-07-11T10:01:20Z
dc.date.available2018-07-11T10:01:20Z
dc.date.issued2018
dc.identifier.citationPerri PF, Rueda García MdM, Cobo Rodríguez B. Multiple sensitive estimation and optimal sample size allocation in the item sum technique. Biometrical Journal. 2018;60:155–173. [http://hdl.handle.net/10481/52231]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/52231
dc.description.abstractFor surveys of sensitive issues in life sciences, statistical procedures can be used to reduce nonresponse and social desirability response bias. Both of these phenomena provoke nonsampling errors that are difficult to deal with and can seriously flaw the validity of the analyses. The item sum technique (IST) is a very recent indirect questioning method derived from the item count technique that seeks to procure more reliable responses on quantitative items than direct questioning while preserving respondents' anonymity. This article addresses two important questions concerning the IST: (i) its implementation when two or more sensitive variables are investigated and efficient estimates of their unknown populationmeans are required; (ii) the determination of the optimal sample size to achieve minimum variance estimates. These aspects are of great relevance for survey practitioners engaged in sensitive research and, to the best of our knowledge, were not studied so far. In this article, theoretical results for multiple estimation and optimal allocation are obtained under a generic sampling design and then particularized to simple random sampling and stratified sampling designs. Theoretical considerations are integrated with a number of simulation studies based on data from two real surveys and conducted to ascertain the efficiency gain derived from optimal allocation in different situations. One of the surveys concerns cannabis consumption among university students. Our findings highlight some methodological advances that can be obtained in life sciences IST surveys when optimal allocation is achieved.es_ES
dc.description.sponsorshipThis work is partially supported by Ministerio de Economía y Competitividad (grant MTM2015-63609-R, Spain), Ministerio de Educación, Cultura y Deporte (grant FPU, Spain), and by the project PRIN-SURWEY (grant 2012F42NS8, Italy).es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectComplex samplinges_ES
dc.subjectHorvitz–Thompson estimatores_ES
dc.subjectIndirect questioning methodses_ES
dc.subjectSensitive researches_ES
dc.titleMultiple sensitive estimation and optimal sample size allocation in the item sum techniquees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/bimj.201700021


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España