Measurement of the Higgs boson coupling properties in the H→ZZ*→4ℓ decay channel at s√ = 13 TeV with the ATLAS detector
Metadatos
Mostrar el registro completo del ítemEditorial
Springer
Materia
Hadron-Hadron scattering (experiments)
Fecha
2018-03-15Referencia bibliográfica
Aaboud, M; Aguilar-Saavedra, Juan Antonio; Atlas Collaboration. Measurement of the Higgs boson coupling properties in the H→ZZ*→4ℓ decay channel at s√ = 13 TeV with the ATLAS detector. JHEP03 (2018) 095 [http://hdl.handle.net/10481/51187]
Patrocinador
We thank CERN for the very successful operation of the LHC, as well as the support sta from our institutions without whom ATLAS could not be operated e ciently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ S, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sk lodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, R egion Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co- nanced by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref.Resumen
The coupling properties of the Higgs boson are studied in the four-lepton decay channel using 36.1 fb−1 of pp collision data from the LHC at a centre-of-mass energy of 13 TeV collected by the ATLAS detector. Cross sections are measured for the four key production modes in several exclusive regions of the phase space and are interpreted in terms of coupling modifiers. The inclusive cross section in the H→ZZ∗ decay and for a Higgs boson absolute rapidity below 2.5 is measured to be 1.73+0.24−0.23(stat.)+0.10−0.08(exp.)±0.04(th.)~pb compared to the Standard Model prediction of 1.34±0.06~pb. In addition, the tensor structure of the Higgs boson couplings is studied using an effective Lagrangian approach for the description of interactions beyond the Standard Model. Improved constraints are placed on the non-Standard-Model CP-even and CP-odd couplings to Z bosons and on the CP-odd coupling to gluons.





