Mostrar el registro sencillo del ítem

dc.contributor.authorRomán, Robertoes_ES
dc.contributor.authorCazorla Cabrera, Alberto es_ES
dc.contributor.authorToledano, Carloses_ES
dc.contributor.authorOlmo Reyes, Francisco José es_ES
dc.contributor.authorCachorro, V. E.es_ES
dc.contributor.authorFrutos, A.es_ES
dc.contributor.authorAlados Arboledas, Lucas es_ES
dc.date.accessioned2017-12-18T07:42:19Z
dc.date.available2017-12-18T07:42:19Z
dc.date.issued2017-11
dc.identifier.citationRomán, R.; et al. Cloud cover detection combining high dynamic range sky images and ceilometer measurements. Atmospheric Research, 196(1): 224-236 (2017). [http://hdl.handle.net/10481/48588]es_ES
dc.identifier.issn0169-8095
dc.identifier.urihttp://hdl.handle.net/10481/48588
dc.description.abstractThis paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.en_EN
dc.description.sponsorshipThis work was supported by the Andalusia Regional Government (project P12-RNM-2409) and by the Consejería de Educación, Junta de Castilla y León (project VA100U14).en_EN
dc.description.sponsorshipSpanish Ministry of Economy and Competitiveness (CGL2013-45410-R, CMT2015-66742-R, CGL2016-81092-R, and FJCI-2014-22052).en
dc.description.sponsorshipFEDER funds under the projects CGL2013-45410-R, CMT2015-66742-R, CGL2016-81092-R.en
dc.description.sponsorship“Juan de la Cierva-Formación” (FJCI-2014-22052) program.en
dc.description.sponsorshipEuropean Union H2020-INFRAIA-2014-2015 project ACTRIS-2 (grant agreement No. 654109)en
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/654109es_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licenseen_EN
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_EN
dc.subjectSky cameraen_EN
dc.subjectCeilometeren_EN
dc.subjectCloud coveren_EN
dc.subjectHDR (High dynamic range)en_EN
dc.subjectClouds en_EN
dc.subjectAerosols en_EN
dc.titleCloud cover detection combining high dymanics range sky images and ceilometer measurementsen_EN
dc.typepreprintes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.atmosres.2017.06.006


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License