Mostrar el registro sencillo del ítem

dc.contributor.advisorRamírez Pérez De Inestrosa, Javier es_ES
dc.contributor.advisorGorriz Sáez, Juan Manuel es_ES
dc.contributor.authorMartínez Murcia, Francisco Jesús es_ES
dc.contributor.otherUniversidad de Granada. Programa Oficial de Doctorado en: Tecnologías de la Información y la Comunicaciónes_ES
dc.date.accessioned2017-06-20T11:59:24Z
dc.date.available2017-06-20T11:59:24Z
dc.date.issued2017
dc.date.submitted2017-06-01
dc.identifier.citationMartínez Murcia, F.J. Statistical neuroimange modeling, processing and syntheris based on texture and component analysis: Tackling the small sample size problem. Granada: Universidad de Granada, 2017. [http://hdl.handle.net/10481/46939]es_ES
dc.identifier.isbn9788491632313
dc.identifier.urihttp://hdl.handle.net/10481/46939
dc.description.abstractThe rise of neuroimaging in the last years has provided physicians and radiologist with the ability to study the brain with unprecedented ease. This led to a new biological perspective in the study of neurodegenerative diseases, allowing the characterization of different anatomical and functional patterns associated with them. Computer Aided Diagnosis (CAD) systems use statistical techniques for preparing, processing and extracting information from neuroimaging data pursuing a major goal: optimize the process of analysis and diagnosis of neurodegenerative diseases and mental conditions. With this thesis we focus on three different stages of the CAD pipeline: preprocessing, feature extraction and validation. For preprocessing, we have developed a method that target a relatively recent concern: the confounding effect of false positives due to differences in the acquisition at multiple sites. Our method can effectively merge datasets while reducing the acquisition site effects. Regarding feature extraction, we have studied decomposition algorithms (independent component analysis, factor analysis), texture features and a complete framework called Spherical Brain Mapping, that reduces the 3-dimensional brain images to two-dimensional statistical maps. This allowed us to improve the performance of automatic systems for detecting Alzheimer’s and Parkinson’s diseases. Finally, we developed a brain simulation technique that can be used to validate new functional datasets as well as for educational purposes.en_EN
dc.description.sponsorshipTesis Univ. Granada. Programa Oficial de Doctorado en: Tecnologías de la Información y la Comunicaciónes_ES
dc.description.sponsorshipContrato de investigación asociado al proyecto de excelencia P11-TIC- 7103 de la Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain).es_ES
dc.description.sponsorshipFinanciación complementaria de los proyectos P09-TIC-4530 de la Junta de Andalucía y TEC2008-02113, TEC2012-34306 y TEC2015-64718-R del MINECO/ FEDER.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.publisherUniversidad de Granadaes_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.subjectNeurología es_ES
dc.subjectImágenes es_ES
dc.subjectDiagnóstico es_ES
dc.subjectAlgoritmos es_ES
dc.subjectProcesado de imágeneses_ES
dc.titleStatistical neuroimange modeling, processing and syntheris based on texture and component analysis: Tackling the small sample size problemen_EN
dc.typedoctoral thesises_ES
dc.subject.udc616.8es_ES
dc.subject.udc621.3es_ES
dc.subject.udc32es_ES
europeana.typeTEXTen_US
europeana.dataProviderUniversidad de Granada. España.es_ES
europeana.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.rights.accessRightsopen accessen_US


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Tesis
    Tesis leídas en la Universidad de Granada

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License