Mostrar el registro sencillo del ítem

dc.contributor.advisorBaños Legrán, Oresti es_ES
dc.contributor.advisorPomares Cintas, Héctor Emilio es_ES
dc.contributor.authorVillalonga Palliser, Claudia es_ES
dc.contributor.otherUniversidad de Granada. Programa Oficial de Doctorado en: Tecnologías de la Información y la Comunicaciónes_ES
dc.date.accessioned2017-01-30T09:43:44Z
dc.date.available2017-01-30T09:43:44Z
dc.date.issued2016
dc.date.submitted2016-12-16
dc.identifier.citationVillalonga Palliser, C. Ontology engineering and reasoning to support real world human behavior recognition. Granada: Universidad de Granada, 2016. [http://hdl.handle.net/10481/44536]es_ES
dc.identifier.isbn9788491630616
dc.identifier.urihttp://hdl.handle.net/10481/44536
dc.description.abstractThis thesis further proposes the Mining Minds Context Ontology, an OWL ontology for exhaustively modeling rich and meaningful expressions of context. This ontology enables any combination of cross-domain behavior primitives, also referred to as low-level contexts, in order to infer more abstract human context representations, also called highlevel contexts. The context ontology extends beyond the state-of-theart while uniting emotion information as a novel behavioral component together with activity and location data to model new contextual information. An ontological method based on descriptive logic is developed for deriving high-level context information out of the combination of cross-domain low-level context primitives, namely activities, locations and emotions. The proposed method not only proves e cient while deriving new contextual information but also robust to potential errors introduced by low-level contexts misrecognitions. This method can be used for determining any type of high-level context information from diverse sources of low-level context data. Thus, it can be easily applied to any new domain, only requiring the extension of the ontology itself. The proposed models and methods enable comprehensive descriptions and dynamic selection mechanisms for heterogeneous sensing resources to support the continuous operation of behavior recognition systems; likewise, exhaustively descriptions and automatic inference of abstract human context information is supported to enhance the operation of behavior-aware systems. Hence, these ontologies and ontology reasoning-based methods pave the path to a new generation of behavior recognition systems readily available for their use in the real-world.en_EN
dc.description.sponsorshipTesis Univ. Granada. Programa Oficial de Doctorado en: Tecnologías de la Información y la Comunicaciónes_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.publisherUniversidad de Granadaes_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.subjectOntología es_ES
dc.subjectConducta es_ES
dc.subjectReconocimiento automáticoes_ES
dc.subjectGenética de la conductaes_ES
dc.subjectBiosensores es_ES
dc.subjectComputación sensible al contextoes_ES
dc.titleOntology engineering and reasoning to support real world human behavior recognitionen_EN
dc.typedoctoral thesises_ES
dc.subject.udc159.9es_ES
dc.subject.udc16es_ES
dc.subject.udc6106es_ES
europeana.typeTEXTen_US
europeana.dataProviderUniversidad de Granada. España.es_ES
europeana.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.rights.accessRightsopen accessen_US


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Tesis
    Tesis leídas en la Universidad de Granada

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License