• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Mecánica de Estructuras e Ingeniería Hidráulica
  • DMEIH - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Mecánica de Estructuras e Ingeniería Hidráulica
  • DMEIH - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nature of acoustic nonlinear radiation stress

[PDF] Rus14_APL.pdf (1.072Mb)
Identificadores
URI: http://hdl.handle.net/10481/41513
DOI: 10.1063/1.4894827
ISSN: 0003-6951
ISSN: 1077-3118
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Rus Carlborg, Guillermo
Editorial
American Institute of Physics (AIP)
Materia
Acoustic Radiation
 
Ultrasound
 
Ultrasonic effects
 
Sound pressure
 
Reynolds stress modeling
 
Velocimetry
 
Viscosity
 
Date
2014
Referencia bibliográfica
Rus Carlborg, G. Nature of acoustic nonlinear radiation stress. Applied Physics Letters, 105(12): 121904 (2014). [http://hdl.handle.net/10481/41513]
Sponsorship
Ministerio de Economía y Competitividad (Spain) for Project DPI2010-17065, and Junta de Andalucía for Projects P11-CTS-8089 and GGI3000IDIB.
Abstract
When a fluid is insonified with ultrasound, a flow consequence of a net stress becomes observable, which has been described as acoustic streaming, quartz wind, acoustic radiation force or acoustic fountain. Following Sir James Lighthill's formulation of the Reynold's streaming, these phenomena have been attributed to a cumulative viscous effect. Instead, a new multiscale effect, whereby the constitutive elastic nonlinearity scales from the ultrasonic to the macroscopic time, is here proposed and formulated to explain its origin. This raises a new term in the Navier-Stokes equation, which ultimately stems from the anharmonicity of the atomic potential. In our experimental validation, this theory is consistent in water and for a range of ultrasonic configurations, whereas the formerly established viscous theory fails by an order of magnitude. This ultrasonic-fluid interaction, called nonlinear mechanical radiation since it is able to remotely exert a stress field, correctly explains a wide range of industrial and biomedical active ultrasonic uses including jet engines, acoustic tweezers, cyanobacteria propulsion mechanisms, nanofluidics or acoustic radiation force elastography.
Collections
  • DMEIH - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback