Mostrar el registro sencillo del ítem

dc.contributor.authorSegovia Román, Fermín 
dc.contributor.authorÁlvarez Illán, Ignacio
dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.contributor.authorRamírez Pérez De Inestrosa, Javier 
dc.contributor.authorRominger, Axel
dc.contributor.authorLevin, Johannes
dc.date.accessioned2015-12-10T13:23:50Z
dc.date.available2015-12-10T13:23:50Z
dc.date.issued2015
dc.identifier.citationSegovia, F.; et al. Distinguishing Parkinson's disease from atypical parkinsonian syndromes using PET data and a computer system based on support vector machines and Bayesian networks. Frontiers in Computational Neuroscience, 9: 137 (2015). [http://hdl.handle.net/10481/39149]es_ES
dc.identifier.issn1662-5188
dc.identifier.urihttp://hdl.handle.net/10481/39149
dc.description.abstractDifferentiating between Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) is still a challenge, specially at early stages when the patients show similar symptoms. During last years, several computer systems have been proposed in order to improve the diagnosis of PD, but their accuracy is still limited. In this work we demonstrate a full automatic computer system to assist the diagnosis of PD using 18F-DMFP PET data. First, a few regions of interest are selected by means of a two-sample t-test. The accuracy of the selected regions to separate PD from APS patients is then computed using a support vector machine classifier. The accuracy values are finally used to train a Bayesian network that can be used to predict the class of new unseen data. This methodology was evaluated using a database with 87 neuroimages, achieving accuracy rates over 78%. A fair comparison with other similar approaches is also provided.es_ES
dc.description.sponsorshipThis work is part of a project approved by the Andalucía Talent Hub Program launched by the Andalusian Knowledge Agency, co-funded by the European Union's Seventh Framework Program, Marie Sklodowska-Curie actions (COFUND Grant Agreement no 291780) and the Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía. The work was also supported by the University of Granada (Spain), the University for Munich (Germany), the MICINN (Spain) under the TEC2012–34306 project and the Consejera de Innovacin, Ciencia y Empresa (Junta de Andaluca, Spain) under the P11–TIC–7103 excellence project.es_ES
dc.language.isoenges_ES
dc.publisherFrontiers Research Foundationes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/291780es_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectBayesian networkes_ES
dc.subjectSupport vector machinees_ES
dc.subject18F-DMFP PETes_ES
dc.subjectParkinson's diseasees_ES
dc.subjectMultivariate analysis es_ES
dc.titleDistinguishing Parkinson's disease from atypical parkinsonian syndromes using PET data and a computer system based on support vector machines and Bayesian networkses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3389/fncom.2015.00137


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License