Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes
Metadata
Show full item recordAuthor
Carrillo Lechuga, Presentación; Medina Sánchez, Juan Manuel; Durán, C.; Herrera, Guillermo; Villafañe, V. E.; Helbling, E. W.Editorial
Copernicus Publications; European Geosciences Union (EGU)
Materia
UVR Phytoplankton Oligotrophic Mediterranean lakes
Date
2015Referencia bibliográfica
Carrillo-Lechuga, P.; et al. Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes. Biogeosciences, 12: 697-712 (2015). [http://hdl.handle.net/10481/35447]
Sponsorship
This study was supported by the Ministerio Español de Medio Ambiente, Rural y Marino (PN2009/067), Ciencia e Innovación (CGL2011-23681), Junta de Andalucía (Excelencia CVI-02598 and P09-RNM-5376), Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET (PIP no. 112-201001-00228), and Fundación Playa Unión. G. Herrera and C. Durán were supported by a Formación de Profesorado Universitario grant from the Spanish government. The authors are indebted to the staff of Sierra Nevada National Park and Lagunas de Ruidera Natural Park for permission to work, to E. Jiménez-Coll for the bacterial production analysis, and to D. Nesbitt for writing assistance in English.Abstract
An indirect effect of global warming is a reduction in the depth of the upper mixed layer (UML) causing organisms to be exposed to higher levels of ultraviolet (UVR, 280–400 nm) and photosynthetically active radiation (PAR, 400–700 nm). This can affect primary and bacterial production as well as the commensalistic phytoplankton–bacteria relationship. The combined effects of UVR and reduction in the depth of the UML were assessed on variables related to the metabolism of phytoplankton and bacteria, during in situ experiments performed with natural pico- and nanoplankton communities from two oligotrophic lakes with contrasting UVR transparency (high-UVR versus low-UVR waters) of southern Spain. The negative UVR effects on epilimnetic primary production (PP) and on heterotrophic bacterial production (HBP), intensified under increased stratification, were higher in the low-UVR than in the high-UVR lake, and stronger on the phytoplanktonic than on the heterotrophic bacterial communities. Under UVR and increased stratification, the commensalistic phytoplankton–bacteria relationship was strengthened in the high-UVR lake where excretion of organic carbon (EOC) rates exceeded the bacterial carbon demand (BCD; i.e., BCD : EOC(%) ratio < 100). This did not occur in the low-UVR lake (i.e., BCD : EOC(%) ratio > 100). The greater UVR damage to phytoplankton and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates that these ecosystems would be especially vulnerable to UVR and increased stratification as stressors related to global climate change. Thus, our findings may have important implications for the carbon cycle in oligotrophic lakes of the Mediterranean region.