Mostrar el registro sencillo del ítem

dc.contributor.authorMorales Ruano, Salvador 
dc.contributor.authorBagur González, María Gracia 
dc.contributor.authorEstepa-Molina, Carmen
dc.contributor.authorCarrillo Rosúa, Francisco Javier 
dc.date.accessioned2015-04-06T09:53:39Z
dc.date.available2015-04-06T09:53:39Z
dc.date.issued2009
dc.identifier.citationMorales-Ruano S.; Bagur-González, M.G.; Estepa-Molina, C.; Carrillo-Rosúa J. Evaluation of mining polluted areas using multivariate statistical approaches: the case of gold mines in the south of Spain. Geochimica et Cosmochimica Acta, 73(13): A902-A902 (2009). [http://hdl.handle.net/10481/35392]es_ES
dc.identifier.issn0016-7037
dc.identifier.urihttp://hdl.handle.net/10481/35392
dc.descriptionVersión preprintes_ES
dc.descriptionGoldschmidt 2009: "Challenges to our volatile planet". June 21-26 in Davos (Switzerland).es_ES
dc.description.abstractThe Rodalquilar gold mining district (Almería, south Spain) is now an abandoned mining area in which different types of metallic mineralizations appear related with volcanic rocks, usually in the form of sulphides or native elements. As consequence of the extraction of metals (gold, lead, zinc, copper, etc.), important volume of dumps waste are generated, which in contact with air and rainwater could cause acid drainage. In this work, the effect of the mining activity on waters was monitored determining the content of eleven elements (Mn, Ba, Co, Cu, Zn, As, Cd, Sb, Hg, Au and Pb). A data matrix constructed with the water samples recollected in Rodalquilar mining district has been subjected to different Pattern Recognition techniques such as Hieralchical Cluster Analysis (HCA), Principal Component Analysis (PCA), Factor Analysis (FA) and Linear Discriminant Analysis (LDA) in order to identify different sources of environmental pollution caused by the abandoned mining industry. The Box-Cox transformation has been used to transform the data set in normal form in order to minimize the non-normal distribution of the geochemical data. Unsupervised pattern recognition methods, as HCA, grouped samples into four clusters. PCA and FA confirm this fact, particularly, FA has been allowed to identify different sources of environmental pollution caused by the abandoned mining industry. It can be concluded that the environmental impact is affected mainly by the mining activity developed in the zone (related with the levels of Cd, Zn, Cu, Pb, Co and As found in the analysed waters), the acid drainage (related with the levels of Ba, As, Co, and Mn in waters) and finally, by the chemical treatment (related mainly with the levels of Hg and Au found) used for the benefit of gold (typically amalgamation with mercury or cyanidation). At last, the use of LDA as a supervised pattern recognition method has permit to obtain a discriminant function which generates “grouping scores” from those it is possible to confirm the natural grouping obtained previously.es_ES
dc.description.sponsorshipDepartamento de Mineralogía y Petrología (Universidad de Granada). Departamento de Química Analítica (Universidad de Granada). Departamento de Didáctica de las Ciencias Experimentales (Universidad de Granada). Instituto Andaluz de Ciencias de la Tierra (Universidad de Granada- Centro Superior de Investigaciones Científicas)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.subjectMininges_ES
dc.subjectPollutedes_ES
dc.subjectRodalquilares_ES
dc.subjectWater es_ES
dc.subjectAlmería es_ES
dc.titleEvaluation of Mining Polluted Areas Using Multivariate Statistical Approaches: The Case of Gold Mines in the South of Spaines_ES
dc.typeotheres_ES
dc.typeotheres_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.gca.2009.05.005


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem