Afficher la notice abrégée

dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.contributor.authorRamírez Pérez De Inestrosa, Javier 
dc.contributor.authorOlivares, Alberto
dc.contributor.authorPadilla De La Torre, Pablo 
dc.contributor.authorPuntonet, Carlos G.
dc.contributor.authorCantón, Manuel
dc.contributor.authorLaguna, Pablo
dc.date.accessioned2014-11-24T07:37:43Z
dc.date.available2014-11-24T07:37:43Z
dc.date.issued2014
dc.identifier.citationGórriz, J.M.; et al. Real Time QRS Detection Based on M-ary Likelihood Ratio Test on the DFT Coefficients. Plos One, 9(10): e110629 (2014). [http://hdl.handle.net/10481/33852]es_ES
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/10481/33852
dc.description.abstractThis paper shows an adaptive statistical test for QRS detection of electrocardiography (ECG) signals. The method is based on a M-ary generalized likelihood ratio test (LRT) defined over a multiple observation window in the Fourier domain. The motivations for proposing another detection algorithm based on maximum a posteriori (MAP) estimation are found in the high complexity of the signal model proposed in previous approaches which i) makes them computationally unfeasible or not intended for real time applications such as intensive care monitoring and (ii) in which the parameter selection conditions the overall performance. In this sense, we propose an alternative model based on the independent Gaussian properties of the Discrete Fourier Transform (DFT) coefficients, which allows to define a simplified MAP probability function. In addition, the proposed approach defines an adaptive MAP statistical test in which a global hypothesis is defined on particular hypotheses of the multiple observation window. In this sense, the observation interval is modeled as a discontinuous transmission discrete-time stochastic process avoiding the inclusion of parameters that constraint the morphology of the QRS complexes.es_ES
dc.description.sponsorshipThis work has received research funding from the Spanish government (www.micinn.es) under project TEC2012 34306 (DiagnoSIS, Diagnosis by means of Statistical Intelligent Systems, 70K€) and projects P09-TIC-4530 (300K€) and P11-TIC-7103 (156K€) from the Andalusian government (http://www.juntadeandalucia.es/organismo​s/economiainnovacioncienciayempleo.html).es_ES
dc.language.isoenges_ES
dc.publisherPublic Library of Science (PLOS)es_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectAlgorithms es_ES
dc.subjectArrhythmia es_ES
dc.subjectDatabase and informatics methodses_ES
dc.subjectElectrocardiography es_ES
dc.subjectMatched filterses_ES
dc.subjectSignal filteringes_ES
dc.subjectSignal processing es_ES
dc.subjectSpeech signal processinges_ES
dc.titleReal Time QRS Detection Based on M-ary Likelihood Ratio Test on the DFT Coefficientses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1371/journal.pone.0110629


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License