Factors influencing the presence of sand flies in Majorca (Balearic Islands, Spain) with special reference to Phlebotomus pernicious, vector of Leishmania infantum
Metadatos
Mostrar el registro completo del ítemAutor
Alcover, María Magdalena; Ballart, Cristina; Martín Sánchez, Joaquina; Serra, Teresa; Castillejo, Soledad; Portús, Montserrat; Gallego, MontserratEditorial
Biomed Central
Materia
Leishmaniosis Phlebotomus perniciosus Risk factors Majorca Island
Fecha
2014Referencia bibliográfica
Alcover, M.M.; et al. Factors influencing the presence of sand flies in Majorca (Balearic Islands, Spain) with special reference to Phlebotomus pernicious, vector of Leishmania infantum. Parasites and Vectors, 7: 421 (2014). [http://hdl.handle.net/10481/33435]
Patrocinador
This work was supported by grants of the Ministerio de Ciencia y Tecnología of Spain (CGL2007-66943-C02-01/BOS), Departament d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya (Spain) (2009SGR385).Resumen
Background:
Although the Mediterranean island of Majorca is an endemic area of leishmaniosis, there is a lack of up-to-date data on its sand fly fauna, the last report dating from 1989. The aim of the present study was to provide information on the current sand fly distribution, the potential environmental factors favoring the presence of Phlebotomus perniciosus and which areas are at risk of leishmaniosis.
Methods:
In July 2008 sand fly captures were carried out in Majorca with sticky castor oil interception traps. The capture stations were distributed in 77 grids (5x5 km2) covering the entire island. A total of 1,882 sticky traps were set among 111 stations. The characteristics of the stations were recorded and maps were designed using ArcGIS 9.2 software. The statistical analysis was carried out using a bivariate and multivariate logistic regression model.
Results:
The sand fly fauna of Majorca is composed of 4 species: Phlebotomus perniciosus, P sergenti, P. papatasi and Sergentomyia minuta. P. perniciosus, responsible for Leishmania infantum transmission, was captured throughout the island (frequency 69.4 %), from 6 to 772 m above sea level. Through logistic regression we estimated the probability of P. perniciosus presence at each sampling site as a function of environmental and meteorological factors. Although in the initial univariate analyses the probability of P. perniciosus presence appeared to be associated with a wide variety of factors, in the multivariate logistic regression model only altitude, settlement, aspect, drainage hole construction, adjacent flora and the proximity of a sheep farm were retained as positive predictors of the distribution of this species.
Conclusions:
P. perniciosus was present throughout the island, and thereby the risk of leishmaniosis transmission. The probability of finding P. perniciosus was higher at altitudes ranging from 51 to 150 m.a.s.l., with adjacent garrigue shrub vegetation, at the edge of or between settlements, and in proximity to a sheep farm.