A theory of power laws in human reaction times: insights from an information-processing approach
Metadata
Show full item recordEditorial
Frontiers Foundation
Materia
Human reaction time Pieron's law Intrinsic variability Power laws Information transfer
Date
2014Referencia bibliográfica
Medina, J.M.; Díaz, J.A.; Norwich, K.H. A theory of power laws in human reaction times: insights from an information-processing approach. Frontiers in Human Neuroscience, 8: 621 (2014). [http://hdl.handle.net/10481/33073]
Abstract
Human reaction time (RT) can be defined as the time elapsed from stimulus presentation until a reaction/response occurs (e.g., manual, verbal, saccadic, etc.). RT has been a fundamental measure of the sensory-motor latency at suprathreshold conditions for more than a century and is one of the hallmarks of human performance in everyday tasks (Luce, 1986; Meyer et al., 1988). Some examples are the measurement of RTs in sports science, driving safety or in aging. Under repeated experimental conditions the RT is not a constant value but fluctuates irregularly over time. Stochastic fluctuations of RTs are considered a benchmark for modeling neural latency mechanisms at a macroscopic scale (Luce, 1986; Smith and Ratcliff, 2004). Power-law behavior has been reported in at least three major types of experiments.