Mostrar el registro sencillo del ítem
Uniqueness of rotation invariant norms
dc.contributor.author | Alaminos Prats, Jerónimo | |
dc.contributor.author | Extremera Lizana, José | |
dc.contributor.author | Villena Muñoz, Armando | |
dc.date.accessioned | 2014-09-12T09:07:15Z | |
dc.date.available | 2014-09-12T09:07:15Z | |
dc.date.issued | 2009 | |
dc.identifier.citation | Alaminos, J.; Extremera, J.; Villena, A.R. Uniqueness of rotation invariant norms. Banach Journal fo Mathematical Analysis, 3(1): 85-98 (2009). [http://hdl.handle.net/10481/32997] | es_ES |
dc.identifier.issn | 1735-8787 | |
dc.identifier.uri | http://hdl.handle.net/10481/32997 | |
dc.description.abstract | If N >= 2, then there exist finitely many rotations of the sphere S(N) such that the set of the corresponding rotation operators on L(p)(S(N)) determines the norm topology for 1 < p <= infinity. For N = 1 the situation is different: the norm topology of L(2)(S(1)) cannot be determined by the set of operators corresponding to the rotations by elements of any 'thin' set of rotations of S(1). | es_ES |
dc.description.sponsorship | The authors were supported by MEC (Spain) Grant MTM2006-04837 and Junta de Andalucía Grants FQM-185 and Proyecto de Excelencia P06-FQM-01438. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Tusi Mathematical Research Group | es_ES |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ | es_ES |
dc.subject | Rotations of the sphere | es_ES |
dc.subject | Automatic continuity | es_ES |
dc.subject | N-set | es_ES |
dc.subject | Dirichlet set | es_ES |
dc.subject | Strong Kazhdan's property | es_ES |
dc.subject | Uniqueness of norm | es_ES |
dc.title | Uniqueness of rotation invariant norms | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |