Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez-Romero, Inmaculada
dc.contributor.authorAriza, Antonio
dc.contributor.authorWilson, Keith S.
dc.contributor.authorSkjøt, Michael
dc.contributor.authorVind, Jesper
dc.contributor.authorMaria, Leonardo de
dc.contributor.authorSkov, Lars K.
dc.contributor.authorSánchez-Ruiz, José María
dc.date.accessioned2014-03-26T11:13:44Z
dc.date.available2014-03-26T11:13:44Z
dc.date.issued2013
dc.identifier.citationSánchez-Romero, I.; et al. Mechanism of Protein Kinetic Stabilization by Engineered Disulfide Crosslinks. Plos One, 8(7): e70013 (2013). [http://hdl.handle.net/10481/31123]es_ES
dc.identifier.issn1932-6203
dc.identifier.otherdoi: 10.1371/journal.pone.0070013
dc.identifier.urihttp://hdl.handle.net/10481/31123
dc.description.abstractThe impact of disulfide bonds on protein stability goes beyond simple equilibrium thermodynamics effects associated with the conformational entropy of the unfolded state. Indeed, disulfide crosslinks may play a role in the prevention of dysfunctional association and strongly affect the rates of irreversible enzyme inactivation, highly relevant in biotechnological applications. While these kinetic-stability effects remain poorly understood, by analogy with proposed mechanisms for processes of protein aggregation and fibrillogenesis, we propose that they may be determined by the properties of sparsely-populated, partially-unfolded intermediates. Here we report the successful design, on the basis of high temperature molecular-dynamics simulations, of six thermodynamically and kinetically stabilized variants of phytase from Citrobacter braakii (a biotechnologically important enzyme) with one, two or three engineered disulfides. Activity measurements and 3D crystal structure determination demonstrate that the engineered crosslinks do not cause dramatic alterations in the native structure. The inactivation kinetics for all the variants displays a strongly non-Arrhenius temperature dependence, with the time-scale for the irreversible denaturation process reaching a minimum at a given temperature within the range of the denaturation transition. We show this striking feature to be a signature of a key role played by a partially unfolded, intermediate state/ensemble. Energetic and mutational analyses confirm that the intermediate is highly unfolded (akin to a proposed critical intermediate in the misfolding of the prion protein), a result that explains the observed kinetic stabilization. Our results provide a rationale for the kinetic-stability consequences of disulfide-crosslink engineering and an experimental methodology to arrive at energetic/structural descriptions of the sparsely populated and elusive intermediates that play key roles in irreversible protein denaturation.es_ES
dc.description.sponsorshipThis work was supported by grants BIO2009-09562, CSD2009-00088 from the Spanish Ministry of Science and Innovation, and FEDER Funds (JMS-R).es_ES
dc.language.isoenges_ES
dc.publisherPublic Library of Science (PLOS)es_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectBiochemical simulationses_ES
dc.subjectBiophysical simulationses_ES
dc.subjectEngineers es_ES
dc.subjectEnzyme structurees_ES
dc.subjectFree energyes_ES
dc.subjectProtein engineeringes_ES
dc.subjectThermal stabilityes_ES
dc.subjectThermodynamicses_ES
dc.titleMechanism of Protein Kinetic Stabilization by Engineered Disulfide Crosslinkses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License