Mostrar el registro sencillo del ítem

dc.contributor.authorMontero Meléndez, Trinidad
dc.contributor.authorLlor, Xavier
dc.contributor.authorGarcía-Planella, Esther
dc.contributor.authorPerretti, Mauro
dc.contributor.authorSuárez García, Antonio
dc.date.accessioned2013-12-19T07:45:33Z
dc.date.available2013-12-19T07:45:33Z
dc.date.issued2013
dc.identifier.citationMontero-Meléndez, T.; et al. Identification of novel predictor classifiers for inflammatory bowel disease by gene expression profiling. Plos One, 8(10): e76235 (2013). [http://hdl.handle.net/10481/29690]es_ES
dc.identifier.issn1932-6203
dc.identifier.otherdoi: 10.1371/journal.pone.0076235
dc.identifier.urihttp://hdl.handle.net/10481/29690
dc.description.abstractBackground: Improvement of patient quality of life is the ultimate goal of biomedical research, particularly when dealing with complex, chronic and debilitating conditions such as inflammatory bowel disease (IBD). This is largely dependent on receiving an accurate and rapid diagnose, an effective treatment and in the prediction and prevention of side effects and complications. The low sensitivity and specificity of current markers burden their general use in the clinical practice. New biomarkers with accurate predictive ability are needed to achieve a personalized approach that take the inter-individual differences into consideration.es_ES
dc.description.abstractMethods: We performed a high throughput approach using microarray gene expression profiling of colon pinch biopsies from IBD patients to identify predictive transcriptional signatures associated with intestinal inflammation, differential diagnosis (Crohn’s disease or ulcerative colitis), response to glucocorticoids (resistance and dependence) or prognosis (need for surgery). Class prediction was performed with self-validating Prophet software package.es_ES
dc.description.abstractResults: Transcriptional profiling divided patients in two subgroups that associated with degree of inflammation. Class predictors were identified with predictive accuracy ranging from 67 to 100%. The expression accuracy was confirmed by real time-PCR quantification. Functional analysis of the predictor genes showed that they play a role in immune responses to bacteria (PTN, OLFM4 and LILRA2), autophagy and endocytocis processes (ATG16L1, DNAJC6, VPS26B, RABGEF1, ITSN1 and TMEM127) and glucocorticoid receptor degradation (STS and MMD2).es_ES
dc.description.abstractConclusions: We conclude that using analytical algorithms for class prediction discovery can be useful to uncover gene expression profiles and identify classifier genes with potential stratification utility of IBD patients, a major step towards personalized therapy.es_ES
dc.description.sponsorshipThis study was funded by Fundació la Marató de TV3 (031531) and Spanish Health Ministry – Carlos III Institute (PI61550). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.es_ES
dc.language.isoenges_ES
dc.publisherPublic Library of Science (PLOS)es_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectBiomarkerses_ES
dc.subjectBiopsy es_ES
dc.subjectDiagnostic medicinees_ES
dc.subjectGene expressiones_ES
dc.subjectInflammation es_ES
dc.subjectInflammatory bowel diseaseses_ES
dc.subjectPrognosis es_ES
dc.titleIdentification of novel predictor classifiers for inflammatory bowel disease by gene expression profilinges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License