Mostrar el registro sencillo del ítem
Propagación aproximada de intervalos de probabilidad en grafos de dependencias
dc.contributor.advisor | Moral Callejón, Serafín | |
dc.contributor.author | Cano Utrera, Andrés | |
dc.contributor.other | Universidad de Granada. Departamento de Ciencias de la Computación e Inteligencia Artificial | es_ES |
dc.date.accessioned | 2013-11-05T09:16:57Z | |
dc.date.available | 2013-11-05T09:16:57Z | |
dc.date.issued | 1999 | |
dc.date.submitted | 1999-06 | |
dc.identifier.citation | Cano Utrera, A. Propagación aproximada de intervalos de probabilidad en grafos de dependencias. Granada: Universidad de Granada, 2000. 231 p. [http://hdl.handle.net/10481/29023] | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/29023 | |
dc.description.abstract | Las redes bayesianas han sido usadas muy frecuentemente para la construcción de sistemas expertos bayesianos. Estos sistemas expertos trabajan con valores de probabilidad precisos. Para un experto resulta muy difícil el dar una gran cantidad de probabilidades precisas a la hora de construir el sistema experto. Debido a ello en esta tesis se propone el uso de intervalos de probabilidad para representar la incertidumbre. Existen algoritmos exactos de propagación de intervalos de probabilidad sobre redes que transforman los intervalos en conjuntos convexos de probabilidad para poder obtener resultados finales correctos. Estos algoritmos son bastante complejos, y en la práctica sólo son capaces de resolver problemas muy simples. Por tanto, en esta tesis se han construído algoritmos aproximados de propagación en grafos de dependencias, en los que las distribuciones vienen dadas por intervalos de probabilidad. Los algoritmos construídos han utilizado técnicas de optimización combinatoria tales como el enfriamiento simulado y los algoritmos genéticos. También hemos utilizado los árboles de probabilidad para representar y operar con los distintos potenciales haciendo la propagación aún más eficiente y permitiendo adaptarnos a la capacidad de memoria de nuestro ordenador. Los árboles de probabilidad han permitido adaptarnos a la capacidad de memoria de nuestro ordenador a la hora de realizar los cálculos. | es_ES |
dc.description.sponsorship | Tesis Univ. Granada. Departamento de Ciencias de la Computación e Inteligencia Artificial | es_ES |
dc.description.sponsorship | Trabajo financiado en parte por la Comunidad Económica Europea, proyecto Esprit III Drums II Bra 6156, y el proyecto "Entorno para el desarrollo de modelos gráficos probabilísticos CICYT (TIC97-1135-C04-01). | es_ES |
dc.format.mimetype | application/pdf | en_US |
dc.language.iso | spa | es_ES |
dc.publisher | Universidad de Granada | es_ES |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ | en_US |
dc.subject | Probabilidades | es_ES |
dc.subject | Inteligencia artificial | es_ES |
dc.subject | Matemáticas | es_ES |
dc.subject | Heurística | es_ES |
dc.title | Propagación aproximada de intervalos de probabilidad en grafos de dependencias | es_ES |
dc.type | doctoral thesis | es_ES |
dc.subject.udc | 519.2 | es_ES |
dc.subject.udc | 681.3 | es_ES |
europeana.type | TEXT | en_US |
europeana.dataProvider | Universidad de Granada. España. | es_ES |
europeana.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/ | en_US |
dc.rights.accessRights | open access | en_US |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Tesis
Tesis leídas en la Universidad de Granada