Mostrar el registro sencillo del ítem

dc.contributor.authorBisterzo, S.
dc.contributor.authorGallino, R.
dc.contributor.authorStraniero, O.
dc.contributor.authorCristallo, S.
dc.contributor.authorKäppeler, F.
dc.date.accessioned2013-10-17T12:37:27Z
dc.date.available2013-10-17T12:37:27Z
dc.date.issued2010
dc.identifier.citationBisterzo, S.; et al. s-Process in low-metallicity stars – I. Theoretical predictions. Monthly Notices of the Royal Astronomical Society, 404(3): 1529-1544 (2010). [http://hdl.handle.net/10481/28442]es_ES
dc.identifier.issn0035-8711
dc.identifier.issn1365-2966
dc.identifier.otherarXiv:1001.5376v2
dc.identifier.urihttp://hdl.handle.net/10481/28442
dc.description.abstractA large sample of carbon-enhanced metal-poor stars enriched in s-process elements (CEMP-s) have been observed in the Galactic halo. These stars of low mass (M∼ 0.9 M⊙) are located on the main-sequence or the red-giant phase, and do not undergo third dredge-up (TDU) episodes. The s-process enhancement is most plausibly due to accretion in a binary system from a more massive companion when on the asymptotic giant branch (AGB) phase (now a white dwarf). In order to interpret the spectroscopic observations, updated AGB models are needed to follow in detail the s-process nucleosynthesis. We present nucleosynthesis calculations based on AGB stellar models obtained with Frascati Raphson-Newton Evolutionary Code (FRANEC) for low initial stellar masses and low metallicities. For a given metallicity, a wide spread in the abundance of the s-process elements is obtained by varying the amount of 13C and its profile in the pocket, where the 13C(α, n)16O reaction is the major neutron source, releasing neutrons in radiative conditions during the interpulse phase. We also account for the second neutron source 22Ne(α, n)25Mg, partially activated during convective thermal pulses. We discuss the surface abundance of elements from carbon to bismuth, for AGB models of initial masses M= 1.3–2 M⊙, low metallicities ([Fe/H] from −1 down to −3.6) and for different 13C-pocket efficiencies. In particular, we analyse the relative behaviour of the three s-process peaks: light-s (ls at magic neutron number N= 50), heavy-s (hs at N= 82) and lead (N= 126). Two s-process indicators, [hs/ls] and [Pb/hs], are needed in order to characterize the s-process distribution. In the on-line material, we provide a set of data tables with surface predictions. Our final objective is to provide a full set of theoretical models of low-mass low-metallicity s-process-enhanced stars. In a forthcoming paper, we will test our results through a comparison with observations of CEMP-s stars.es_ES
dc.description.sponsorshipThis work was supported by the Italian MIUR-PRIN 2006 Project ‘Late Phases of Stellar Evolution: Nucleosynthesis in Supernovae, AGB Stars, Planetary Nebulae’.es_ES
dc.language.isoenges_ES
dc.publisherOxford University Press (OUP); Royal Astronomical Societyes_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectStars es_ES
dc.subjectAGBes_ES
dc.subjectCarbon es_ES
dc.subjectPopulation IIes_ES
dc.subjectNucleosynthesises_ES
dc.titles-Process in low-metallicity stars – I. Theoretical predictionses_ES
dc.typeinfo:eu-repo/semantics/preprintes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1111/j.1365-2966.2010.16369.xes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License