• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Transporte y Seguridad (TEP246)
  • TEP246 - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Transporte y Seguridad (TEP246)
  • TEP246 - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extracting decision rules from police accident reports through decision trees

[PDF] 2013AAPrules.pdf (793.8Ko)
Identificadores
URI: http://hdl.handle.net/10481/24425
ISSN: 0001-4575
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Oña López, Juan José De; López Maldonado, Griselda; Abellán Mulero, Joaquín
Editorial
Elsevier
Materia
Traffic accident
 
Severity
 
Decision trees
 
CART (Classification and Regression Tree)
 
C4.5
 
Decision rules
 
Date
2013
Referencia bibliográfica
Oña, J.; López, G.; Abellán, J. Extracting decision rules from police accident reports through decision trees. Accident Analysis and Prevention 50: 1151–1160 (2013). [http://hdl.handle.net/10481/24425]
Patrocinador
TRYSE Research Group, Department of Civil Engineering, University of Granada, Spain
Résumé
Given the current number of road accidents, the aim of many road safety analysts is to identify the main factors that contribute to crash severity. To pinpoint those factors, this paper shows an application that applies some of the methods most commonly used to build decision trees (DTs), which have not been applied to the road safety field before. An analysis of accidents on rural highways in the province of Granada (Spain) between 2003 and 2009 (both inclusive) showed that the methods used to build DTs serve our purpose and may even be complementary. Applying these methods has enabled potentially useful decision rules to be extracted that could be used by road safety analysts. For instance, some of the rules may indicate that women, contrary to men, increase their risk of severity under bad lighting conditions. The rules could be used in road safety campaigns to mitigate specific problems. This would enable managers to implement priority actions based on a classification of accidents by types (depending on their severity). However, the primary importance of this proposal is that other databases not used here (i.e. other infrastructure, roads and countries) could be used to identify unconventional problems in a manner easy for road safety managers to understand, as decision rules.
Colecciones
  • TEP246 - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire