• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Transporte y Seguridad (TEP246)
  • TEP246 - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Transporte y Seguridad (TEP246)
  • TEP246 - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bilevel fuzzy optimization to pre-process traffic data to satisfy the law of flow conservation

[PDF] 2011TR-C.pdf (526.5Kb)
Identificadores
URI: http://hdl.handle.net/10481/24403
ISSN: 0968-090X
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
de Oña, Juan; Gómez, Penélope; Mérida-Casermeiro, Enrique
Editorial
Elsevier
Materia
Traffic counts
 
Fuzzy logic
 
Transport planning
 
Optimization
 
Data consistency
 
Subjective analyst knowledge
 
Date
2011
Referencia bibliográfica
de Oña, J.; Gómez, P.; Mérida-Casermeiro, E. Bilevel fuzzy optimization to pre-process traffic data to satisfy the law of flow conservation. Transportation Research Part C: Emerging Technologies, 19(1): 29–39 (2011). [http://hdl.handle.net/10481/24403]
Sponsorship
TRYSE Research Group, Department of Civil Engineering, University of Granada, Spain
Abstract
Traffic data obtained in the field usually have some errors. For instance, traffic volume data on the various links of a network must be consistent and satisfy flow conservation, but this rarely occurs. This paper presents a method for using fuzzy optimization to adjust observed values so they meet flow conservation equations and any consistency requirements. The novelty lies in the possibility of obtaining the best combination of adjusted values, thereby preserving data integrity as much as possible. The proposed method allows analysts to manage field data reliability by assigning different ranges to each observed value. The paper is divided into two sections: the first section explains the theory through a simple example of a case in which the data is equally reliable and a case in which the observed data comes from more or less reliable sources, and the second one is an actual application of the method in a freeway network in southern Spain where data were available but some data were missing.
Collections
  • TEP246 - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través de

Contact Us | Send Feedback