• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Transporte y Seguridad (TEP246)
  • TEP246 - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Transporte y Seguridad (TEP246)
  • TEP246 - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A classification tree approach to identify key factors of transit service quality

[PDF] 2012 ESWA.pdf (541.3Kb)
Identificadores
URI: http://hdl.handle.net/10481/24394
ISSN: 0957-4174
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Oña López, Juan José De; Oña López, Rocío de; Calvo Poyo, Francisco Javier
Editorial
Elsevier
Materia
Service quality
 
Bus transit
 
Data mining
 
Classification and regression trees (CART)
 
CART
 
Non-parametric techniques
 
Fecha
2012
Referencia bibliográfica
de Oña, J.; de Oña, R.; Calvo, F.J. A classification tree approach to identify key factors of transit service quality. Expert Systems with Applications, 39 (12): 11164–11171 (2012). [http://hdl.handle.net/10481/24394]
Patrocinador
Consejería de Innovación, Ciencia y Economía of the Junta de Andalucía (Spain) through the Excellence Research Project denominated ‘‘Q-METROBUS-Quality of service indicator for METROpolitan public BUS transport services’’.
Resumen
A key aspect to take into consideration when developing indices to evaluate transit service quality is to determine how much weight passengers give to each attribute when making a global assessment of service quality (SQ). The simplest method of a direct question in customer satisfaction survey (CSS) poses a number of problems, and therefore statistical regression methods have been developed to infer attribute importance on the basis of CSS or stated preference surveys. However, most regression models have their own model assumptions and pre-defined underlying relationships between dependant and independent variables. If these assumptions are violated, the model could lead to erroneous estimations. This paper proposes using a classification and regression tree (CART) that does not require any pre-defined underlying relationship between dependent and independents variables, to identify the key factors affecting bus transit quality of service. The paper uses the data gathered in a CSS conducted on the Granada metropolitan transit system in 2007, which was a non-research oriented survey. Two CART models were developed to compare the key attributes identified before and after making passengers reflect on the main aspects of the system. The outcomes show that, in a preliminary evaluation, passenger perception of SQ is basically influenced by frequency. After being asked to evaluate all the attributes, however, other attributes (e.g. proximity, speed and safety) become more important than frequency.
Colecciones
  • TEP246 - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias